001     163678
005     20230915092426.0
024 7 _ |a 10.1016/j.neuroimage.2021.118769
|2 doi
024 7 _ |a pmid:34861394
|2 pmid
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
037 _ _ |a DZNE-2022-00424
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Arboit, Alberto
|0 P:(DE-2719)2811871
|b 0
|e First author
|u dzne
245 _ _ |a Brief neuronal afterdischarges in the rat hippocampus lead to transient changes in oscillatory activity and to a very long-lasting decline in BOLD signals without inducing a hypoxic state.
260 _ _ |a Orlando, Fla.
|c 2021
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1655114180_6960
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The effects of hippocampal neuronal afterdischarges (nAD) on hemodynamic parameters, such as blood-oxygen-level-dependent (BOLD) signals) and local cerebral blood volume (CBV) changes, as well as neuronal activity and metabolic parameters in the dentate gyrus, was investigated in rats by combining in vivo electrophysiology with functional magnetic resonance imaging (fMRI) or 1H-nuclear magnetic resonance spectroscopy (1H-NMRS). Brief electrical high-frequency pulse-burst stimulation of the right perforant pathway triggered nAD, a seizure-like activity, in the right dentate gyrus with a high incidence, a phenomenon that in turn caused a sustained decrease in BOLD signals for more than 30 min. The decrease was associated with a reduction in CBV but not with signs of hypoxic metabolism. nAD also triggered transient changes mainly in the low gamma frequency band that recovered within 20 min, so that the longer-lasting altered hemodynamics reflected a switch in blood supply rather than transient changes in ongoing neuronal activity. Even in the presence of reduced baseline BOLD signals, neurovascular coupling mechanisms remained intact, making long-lasting vasospasm unlikely. Subsequently generated nAD did not further alter the baseline BOLD signals. Similarly, nAD did not alter baseline BOLD signals when acetaminophen was previously administered, because acetaminophen alone had already caused a similar decrease in baseline BOLD signals as observed after the first nAD. Thus, at least two different blood supply states exist for the hippocampus, one low and one high, with both states allowing similar neuronal activity. Both acetaminophen and nAD switch from the high to the low blood supply state. As a result, the hemodynamic response function to an identical stimulus differed after nAD or acetaminophen, although the triggered neuronal activity was similar.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a 1H-NMR spectroscopy
|2 Other
650 _ 7 |a Electrophysiology
|2 Other
650 _ 7 |a Gamma oscillations
|2 Other
650 _ 7 |a Negative BOLD
|2 Other
650 _ 7 |a Postictal state
|2 Other
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Brain Waves: drug effects
|2 MeSH
650 _ 2 |a Brain Waves: physiology
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
650 _ 2 |a Electrocorticography
|2 MeSH
650 _ 2 |a Hippocampus: drug effects
|2 MeSH
650 _ 2 |a Hippocampus: physiology
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Neuroimaging
|2 MeSH
650 _ 2 |a Neurovascular Coupling: drug effects
|2 MeSH
650 _ 2 |a Neurovascular Coupling: physiology
|2 MeSH
650 _ 2 |a Proton Magnetic Resonance Spectroscopy
|2 MeSH
650 _ 2 |a Rats
|2 MeSH
650 _ 2 |a Rats, Wistar
|2 MeSH
650 _ 2 |a Seizures: metabolism
|2 MeSH
650 _ 2 |a Seizures: physiopathology
|2 MeSH
700 1 _ |a Ku, Shih-Pi
|b 1
700 1 _ |a Krautwald, Karla
|0 P:(DE-2719)2278716
|b 2
|u dzne
700 1 _ |a Angenstein, Frank
|0 P:(DE-2719)2810456
|b 3
|e Last author
|u dzne
773 _ _ |a 10.1016/j.neuroimage.2021.118769
|g Vol. 245, p. 118769 -
|0 PERI:(DE-600)1471418-8
|p 118769
|t NeuroImage
|v 245
|y 2021
|x 1053-8119
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/163678/files/DZNE-2022-00424.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/163678/files/DZNE-2022-00424.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:163678
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2811871
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2278716
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2810456
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-29
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)
|0 LIC:(DE-HGF)CCBYNCNDNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-01-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-27T20:29:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-27T20:29:23Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-09-27T20:29:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2021
|d 2022-11-12
920 1 _ |0 I:(DE-2719)1310004
|k AG Angenstein
|l Functional Neuroimaging
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1310004
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21