001     163706
005     20230915090531.0
024 7 _ |a pmc:PMC8975993
|2 pmc
024 7 _ |a 10.1038/s41531-022-00288-w
|2 doi
024 7 _ |a altmetric:125741739
|2 altmetric
024 7 _ |a pmid:35365675
|2 pmid
037 _ _ |a DZNE-2022-00445
082 _ _ |a 610
100 1 _ |a Makarious, Mary B.
|0 0000-0002-7978-1051
|b 0
245 _ _ |a Multi-modality machine learning predicting Parkinson’s disease
260 _ _ |a London [u.a.]
|c 2022
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1657627501_13981
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Personalized medicine promises individualized disease prediction and treatment. The convergence of machine learning (ML) and available multimodal data is key moving forward. We build upon previous work to deliver multimodal predictions of Parkinson’s disease (PD) risk and systematically develop a model using GenoML, an automated ML package, to make improved multi-omic predictions of PD, validated in an external cohort. We investigated top features, constructed hypothesis-free disease-relevant networks, and investigated drug–gene interactions. We performed automated ML on multimodal data from the Parkinson’s progression marker initiative (PPMI). After selecting the best performing algorithm, all PPMI data was used to tune the selected model. The model was validated in the Parkinson’s Disease Biomarker Program (PDBP) dataset. Our initial model showed an area under the curve (AUC) of 89.72% for the diagnosis of PD. The tuned model was then tested for validation on external data (PDBP, AUC 85.03%). Optimizing thresholds for classification increased the diagnosis prediction accuracy and other metrics. Finally, networks were built to identify gene communities specific to PD. Combining data modalities outperforms the single biomarker paradigm. UPSIT and PRS contributed most to the predictive power of the model, but the accuracy of these are supplemented by many smaller effect transcripts and risk SNPs. Our model is best suited to identifying large groups of individuals to monitor within a health registry or biobank to prioritize for further testing. This approach allows complex predictive models to be reproducible and accessible to the community, with the package, code, and results publicly available.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: pub.dzne.de
700 1 _ |a Leonard, Hampton L.
|0 P:(DE-2719)9001970
|b 1
|u dzne
700 1 _ |a Vitale, Dan
|b 2
700 1 _ |a Iwaki, Hirotaka
|b 3
700 1 _ |a Sargent, Lana
|b 4
700 1 _ |a Dadu, Anant
|b 5
700 1 _ |a Violich, Ivo
|b 6
700 1 _ |a Hutchins, Elizabeth
|b 7
700 1 _ |a Saffo, David
|b 8
700 1 _ |a Bandres-Ciga, Sara
|b 9
700 1 _ |a Kim, Jonggeol Jeff
|b 10
700 1 _ |a Song, Yeajin
|b 11
700 1 _ |a Maleknia, Melina
|b 12
700 1 _ |a Bookman, Matt
|b 13
700 1 _ |a Nojopranoto, Willy
|b 14
700 1 _ |a Campbell, Roy H.
|0 0000-0002-3754-7777
|b 15
700 1 _ |a Hashemi, Sayed Hadi
|b 16
700 1 _ |a Botia, Juan A.
|b 17
700 1 _ |a Carter, John F.
|b 18
700 1 _ |a Craig, David W.
|0 0000-0003-2040-1955
|b 19
700 1 _ |a Van Keuren-Jensen, Kendall
|b 20
700 1 _ |a Morris, Huw R.
|0 0000-0002-5473-3774
|b 21
700 1 _ |a Hardy, John A.
|b 22
700 1 _ |a Blauwendraat, Cornelis
|0 P:(DE-2719)2810837
|b 23
|u dzne
700 1 _ |a Singleton, Andrew B.
|0 0000-0001-5606-700X
|b 24
700 1 _ |a Faghri, Faraz
|0 0000-0001-5744-8728
|b 25
700 1 _ |a Nalls, Mike A.
|b 26
773 _ _ |a 10.1038/s41531-022-00288-w
|g Vol. 8, no. 1, p. 35
|0 PERI:(DE-600)2819218-7
|n 1
|p 35
|t npj Parkinson's Disease
|v 8
|y 2022
|x 2373-8057
856 4 _ |u https://pub.dzne.de/record/163706/files/DZNE-2022-00445.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/163706/files/DZNE-2022-00445.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:163706
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9001970
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 23
|6 P:(DE-2719)2810837
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NPJ PARKINSONS DIS : 2021
|d 2023-03-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-03-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-03-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-13T14:34:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-13T14:34:28Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-10-13T14:34:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-03-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-03-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-03-31
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NPJ PARKINSONS DIS : 2021
|d 2023-03-31
920 1 _ |0 I:(DE-2719)6000018
|k Tübingen common
|l Tübingen common
|x 0
920 1 _ |0 I:(DE-2719)1210000
|k AG Gasser
|l Parkinson Genetics
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)6000018
980 _ _ |a I:(DE-2719)1210000-7
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21