001     163734
005     20230915090534.0
024 7 _ |a 10.1523/JNEUROSCI.1305-21.2022
|2 doi
024 7 _ |a pmid:35149515
|2 pmid
024 7 _ |a pmc:PMC8944241
|2 pmc
024 7 _ |a 0270-6474
|2 ISSN
024 7 _ |a 1529-2401
|2 ISSN
024 7 _ |a altmetric:122950065
|2 altmetric
037 _ _ |a DZNE-2022-00473
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Meyer Zu Reckendorf, Sofia
|0 0000-0001-6978-1915
|b 0
245 _ _ |a Motoneuron-Specific PTEN Deletion in Mice Induces Neuronal Hypertrophy and Also Regeneration after Facial Nerve Injury.
260 _ _ |a Washington, DC
|c 2022
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1677859836_10793
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In postmitotic neurons, several tumor suppressor genes (TSGs), including p53, Rb, and PTEN, modulate the axon regeneration success after injury. Particularly, PTEN inhibition is a key driver of successful CNS axon regeneration after optic nerve or spinal cord injury. In contrast, in peripheral neurons, TSG influence in neuronal morphology, physiology, and pathology has not been investigated to the same depth. In this study, we conditionally deleted PTEN from mouse facial motoneurons (Chat-Cre/PtenloxP/loxP ) and analyzed neuronal responses in vivo with or without peripheral facial nerve injury in male and female mice. In uninjured motoneurons, PTEN loss induced somatic, axonal, and nerve hypertrophy, synaptic terminal enlargement and reduction in physiological whisker movement. Despite these morphologic and physiological changes, PTEN deletion positively regulated facial nerve regeneration and recovery of whisker movement after nerve injury. Regenerating PTEN-deficient motoneurons upregulated P-CREB and a signaling pathway involving P-Akt, P-PRAS40, P-mTOR, and P-4EBP1. In aged mice (12 months), PTEN deletion induced hair loss and facial hyperplasia of the epidermis. This suggests a time window in younger mice with PTEN loss stimulating axon growth after injury, however, at the risk of hyperplasia formation at later time points in the old animal. Overall, our data highlight a dual TSG function with PTEN loss impairing physiological neuron function but furthermore underscoring the positive effects of PTEN ablation in axon regeneration also for the PNS.SIGNIFICANCE STATEMENT Tumor suppressor genes (TSGs) restrict cell proliferation and growth. TSG inhibition, including p53 and PTEN, stimulates axon regeneration after CNS injury. In contrast, in PNS axon regeneration, TSGs have not been analyzed in great depth. Herein we show enhanced peripheral axon regeneration after PTEN deletion from facial motoneurons. This invokes a signaling cascade with novel PTEN partners, including CREB and PRAS40. In adult mice, PTEN loss induces hyperplasia of the skin epidermis, suggesting detrimental consequences when reaching adulthood in contrast to a beneficial TSG role for regeneration in young adult mice. Thus, our data highlight the double-edged sword nature of interfering with TSG function.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
542 _ _ |i 2022-09-23
|2 Crossref
|u https://creativecommons.org/licenses/by-nc-sa/4.0/
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Akt
|2 Other
650 _ 7 |a CREB
|2 Other
650 _ 7 |a PTEN
|2 Other
650 _ 7 |a facial nerve
|2 Other
650 _ 7 |a motoneuron
|2 Other
650 _ 7 |a nerve regeneration
|2 Other
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Axons: physiology
|2 MeSH
650 _ 2 |a Facial Nerve Injuries: genetics
|2 MeSH
650 _ 2 |a Facial Nerve Injuries: pathology
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Hyperplasia: pathology
|2 MeSH
650 _ 2 |a Hypertrophy: pathology
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Motor Neurons: metabolism
|2 MeSH
650 _ 2 |a Nerve Regeneration: genetics
|2 MeSH
650 _ 2 |a PTEN Phosphohydrolase: metabolism
|2 MeSH
650 _ 2 |a Tumor Suppressor Protein p53
|2 MeSH
700 1 _ |a Moser, Diana
|b 1
700 1 _ |a Blechschmidt, Anna
|b 2
700 1 _ |a Joga, Venkata Neeha
|b 3
700 1 _ |a Sinske, Daniela
|b 4
700 1 _ |a Hegler, Jutta
|b 5
700 1 _ |a Deininger, Stefanie
|b 6
700 1 _ |a Castanese, Alberto
|0 P:(DE-2719)9001873
|b 7
|u dzne
700 1 _ |a Vettorazzi, Sabine
|b 8
700 1 _ |a Antoniadis, Gregor
|b 9
700 1 _ |a Böckers, Tobias
|0 P:(DE-2719)2812855
|b 10
|u dzne
700 1 _ |a Knöll, Bernd
|0 0000-0001-7685-3796
|b 11
773 1 8 |a 10.1523/jneurosci.1305-21.2022
|b Society for Neuroscience
|d 2022-02-11
|n 12
|p 2474-2491
|3 journal-article
|2 Crossref
|t The Journal of Neuroscience
|v 42
|y 2022
|x 0270-6474
773 _ _ |a 10.1523/JNEUROSCI.1305-21.2022
|g Vol. 42, no. 12, p. 2474 - 2491
|0 PERI:(DE-600)1475274-8
|n 12
|p 2474-2491
|t The journal of neuroscience
|v 42
|y 2022
|x 0270-6474
909 C O |p VDB
|o oai:pub.dzne.de:163734
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)9001873
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)2812855
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEUROSCI : 2021
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-13
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-13
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NEUROSCI : 2021
|d 2022-11-13
920 1 _ |0 I:(DE-2719)1910002
|k AG Böckers
|l Translational Protein Biochemistry
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1910002
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1016/j.expneurol.2016.03.012
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s00401-020-02151-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1084/jem.20181406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.15252/emmm.202013131
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/ENEURO.0358-16.2016
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms4670
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.6271-09.2010
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41583-020-0269-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/sj.emboj.7601292
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3389/fncel.2019.00128
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.7554/eLife.29241
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.neuroscience.2007.10.048
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.expneurol.2018.02.012
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.expneurol.2018.01.005
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.neuron.2004.10.030
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1098/rsob.160091
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nn.4425
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1371/journal.pone.0045806
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1065518
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1158/0008-5472.CAN-10-3399
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.4103/1673-5374.189160
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.expneurol.2016.02.013
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0169-328X(94)90098-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/ENEURO.0025-19.2019
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41419-018-1289-z
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1101/cshperspect.a020487
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.1249-15.2015
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.4340-10.2010
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s42003-019-0524-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1371/journal.pone.0007820
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nn.2603
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.molimm.2019.04.010
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1074/jbc.M114.582460
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.7554/eLife.14908
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.brainresrev.2003.11.004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1093/hmg/ddq226
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1161566
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.cmet.2011.01.010
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1159/000210400
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1093/brain/awu031
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1159/000504782
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.3029-13.2013
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 Suzuki
|y 2003
|2 Crossref
|o Suzuki 2003
999 C 5 |a 10.1016/S0166-2236(99)01500-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41419-021-03433-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s12017-017-8450-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/bjp.2008.185
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1164/rccm.200507-1058OC
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.3144-14.2015
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1152/ajpendo.00660.2011
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.18632/aging.103664
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms6416
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/sj.jcbfm.9600501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.stemcr.2017.05.006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1111/jcmm.15648
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/1061186X.2021.1882470
|9 -- missing cx lookup --
|1 Zhou
|p 703 -
|2 Crossref
|t J Drug Target
|v 29
|y 2021
999 C 5 |a 10.1016/j.pneurobio.2018.12.001
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21