| Home > Publications Database > The synaptic scaffold protein MPP2 interacts with GABAA receptors at the periphery of the postsynaptic density of glutamatergic synapses. > print |
| 001 | 163742 | ||
| 005 | 20230915090534.0 | ||
| 024 | 7 | _ | |a 10.1371/journal.pbio.3001503 |2 doi |
| 024 | 7 | _ | |a pmid:35312684 |2 pmid |
| 024 | 7 | _ | |a pmc:PMC8970474 |2 pmc |
| 024 | 7 | _ | |a 1544-9173 |2 ISSN |
| 024 | 7 | _ | |a 1545-7885 |2 ISSN |
| 024 | 7 | _ | |a altmetric:125080596 |2 altmetric |
| 037 | _ | _ | |a DZNE-2022-00481 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Schmerl, Bettina |b 0 |
| 245 | _ | _ | |a The synaptic scaffold protein MPP2 interacts with GABAA receptors at the periphery of the postsynaptic density of glutamatergic synapses. |
| 260 | _ | _ | |a Lawrence, KS |c 2022 |b PLoS |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1655120870_6957 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Recent advances in imaging technology have highlighted that scaffold proteins and receptors are arranged in subsynaptic nanodomains. The synaptic membrane-associated guanylate kinase (MAGUK) scaffold protein membrane protein palmitoylated 2 (MPP2) is a component of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-associated protein complexes and also binds to the synaptic cell adhesion molecule SynCAM 1. Using superresolution imaging, we show that-like SynCAM 1-MPP2 is situated at the periphery of the postsynaptic density (PSD). In order to explore MPP2-associated protein complexes, we used a quantitative comparative proteomics approach and identified multiple γ-aminobutyric acid (GABA)A receptor subunits among novel synaptic MPP2 interactors. In line with a scaffold function for MPP2 in the assembly and/or modulation of intact GABAA receptors, manipulating MPP2 expression had effects on inhibitory synaptic transmission. We further show that GABAA receptors are found together with MPP2 in a subset of dendritic spines and thus highlight MPP2 as a scaffold that serves as an adaptor molecule, linking peripheral synaptic elements critical for inhibitory regulation to central structures at the PSD of glutamatergic synapses. |
| 536 | _ | _ | |a 351 - Brain Function (POF4-351) |0 G:(DE-HGF)POF4-351 |c POF4-351 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
| 650 | _ | 7 | |a Membrane Proteins |2 NLM Chemicals |
| 650 | _ | 7 | |a Receptors, AMPA |2 NLM Chemicals |
| 650 | _ | 7 | |a Receptors, GABA-A |2 NLM Chemicals |
| 650 | _ | 2 | |a Membrane Proteins: metabolism |2 MeSH |
| 650 | _ | 2 | |a Post-Synaptic Density: metabolism |2 MeSH |
| 650 | _ | 2 | |a Receptors, AMPA: metabolism |2 MeSH |
| 650 | _ | 2 | |a Receptors, GABA-A |2 MeSH |
| 650 | _ | 2 | |a Synapses: metabolism |2 MeSH |
| 700 | 1 | _ | |a Gimber, Niclas |b 1 |
| 700 | 1 | _ | |a Kuropka, Benno |b 2 |
| 700 | 1 | _ | |a Stumpf, Alexander |b 3 |
| 700 | 1 | _ | |a Rentsch, Jakob |b 4 |
| 700 | 1 | _ | |a Kunde, Stella-Amrei |b 5 |
| 700 | 1 | _ | |a von Sivers, Judith |b 6 |
| 700 | 1 | _ | |a Ewers, Helge |b 7 |
| 700 | 1 | _ | |a Schmitz, Dietmar |0 P:(DE-2719)2810725 |b 8 |u dzne |
| 700 | 1 | _ | |a Freund, Christian |b 9 |
| 700 | 1 | _ | |a Schmoranzer, Jan |b 10 |
| 700 | 1 | _ | |a Rademacher, Nils |0 P:(DE-2719)2814334 |b 11 |u dzne |
| 700 | 1 | _ | |a Shoichet, Sarah A |0 0000-0003-4933-7846 |b 12 |
| 773 | _ | _ | |a 10.1371/journal.pbio.3001503 |g Vol. 20, no. 3, p. e3001503 - |0 PERI:(DE-600)2126773-X |n 3 |p e3001503 |t PLoS biology |v 20 |y 2022 |x 1544-9173 |
| 856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/163742/files/DZNE-2022-00481.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/163742/files/DZNE-2022-00481.pdf?subformat=pdfa |
| 909 | C | O | |o oai:pub.dzne.de:163742 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 8 |6 P:(DE-2719)2810725 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 11 |6 P:(DE-2719)2814334 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-351 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Brain Function |x 0 |
| 914 | 1 | _ | |y 2022 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-01-26 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2021-01-26 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-26 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-01-26 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-01-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-01-10T10:28:08Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-01-10T10:28:08Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2022-01-10T10:28:08Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2022-11-11 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PLOS BIOL : 2021 |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-11 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-11 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PLOS BIOL : 2021 |d 2022-11-11 |
| 920 | 1 | _ | |0 I:(DE-2719)1810004 |k AG Schmitz 1 |l Network Dysfunction |x 0 |
| 920 | 1 | _ | |0 I:(DE-2719)1810001 |k AG Garner |l Synaptopathy |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-2719)1830000 |
| 980 | _ | _ | |a I:(DE-2719)1810001 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|