000163758 001__ 163758 000163758 005__ 20240612120602.0 000163758 0247_ $$2pmc$$apmc:PMC9148291 000163758 0247_ $$2doi$$a10.1007/s12035-022-02793-8 000163758 0247_ $$2pmid$$apmid:35312967 000163758 0247_ $$2ISSN$$a0893-7648 000163758 0247_ $$2ISSN$$a1559-1182 000163758 0247_ $$2altmetric$$aaltmetric:125087265 000163758 037__ $$aDZNE-2022-00497 000163758 041__ $$aEnglish 000163758 082__ $$a570 000163758 1001_ $$00000-0002-6166-4818$$aEndepols, Heike$$b0 000163758 245__ $$aAssessment of the In Vivo Relationship Between Cerebral Hypometabolism, Tau Deposition, TSPO Expression, and Synaptic Density in a Tauopathy Mouse Model: a Multi-tracer PET Study. 000163758 260__ $$aTotowa, NJ$$bHumana Press$$c2022 000163758 3367_ $$2DRIVER$$aarticle 000163758 3367_ $$2DataCite$$aOutput Types/Journal article 000163758 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1718113692_5898 000163758 3367_ $$2BibTeX$$aARTICLE 000163758 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000163758 3367_ $$00$$2EndNote$$aJournal Article 000163758 500__ $$a(CC BY 4.0) 000163758 520__ $$aCerebral glucose hypometabolism is a typical hallmark of Alzheimer's disease (AD), usually associated with ongoing neurodegeneration and neuronal dysfunction. However, underlying pathological processes are not fully understood and reproducibility in animal models is not well established. The aim of the present study was to investigate the regional interrelation of glucose hypometabolism measured by [18F]FDG positron emission tomography (PET) with various molecular targets of AD pathophysiology using the PET tracers [18F]PI-2620 for tau deposition, [18F]DPA-714 for TSPO expression associated with neuroinflammation, and [18F]UCB-H for synaptic density in a transgenic tauopathy mouse model. Seven-month-old rTg4510 mice (n = 8) and non-transgenic littermates (n = 8) were examined in a small animal PET scanner with the tracers listed above. Hypometabolism was observed throughout the forebrain of rTg4510 mice. Tau pathology, increased TSPO expression, and synaptic loss were co-localized in the cortex and hippocampus and correlated with hypometabolism. In the thalamus, however, hypometabolism occurred in the absence of tau-related pathology. Thus, cerebral hypometabolism was associated with two regionally distinct forms of molecular pathology: (1) characteristic neuropathology of the Alzheimer-type including synaptic degeneration and neuroinflammation co-localized with tau deposition in the cerebral cortex, and (2) pathological changes in the thalamus in the absence of other markers of AD pathophysiology, possibly reflecting downstream or remote adaptive processes which may affect functional connectivity. Our study demonstrates the feasibility of a multitracer approach to explore complex interactions of distinct AD-pathomechanisms in vivo in a small animal model. The observations demonstrate that multiple, spatially heterogeneous pathomechanisms can contribute to hypometabolism observed in AD mouse models and they motivate future longitudinal studies as well as the investigation of possibly comparable pathomechanisms in human patients. 000163758 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0 000163758 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x1 000163758 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de 000163758 650_7 $$2Other$$aAlzheimer’s disease 000163758 650_7 $$2Other$$aCerebral hypometabolism 000163758 650_7 $$2Other$$aMicroglial activation 000163758 650_7 $$2Other$$aNeuroinflammation 000163758 650_7 $$2Other$$aSmall animal PET 000163758 650_7 $$2Other$$aSynaptic density 000163758 650_7 $$2Other$$aTau 000163758 650_2 $$2MeSH$$aAlzheimer Disease: diagnostic imaging 000163758 650_2 $$2MeSH$$aAlzheimer Disease: metabolism 000163758 650_2 $$2MeSH$$aAnimals 000163758 650_2 $$2MeSH$$aBrain: diagnostic imaging 000163758 650_2 $$2MeSH$$aBrain: metabolism 000163758 650_2 $$2MeSH$$aDisease Models, Animal 000163758 650_2 $$2MeSH$$aGlucose 000163758 650_2 $$2MeSH$$aHumans 000163758 650_2 $$2MeSH$$aMice 000163758 650_2 $$2MeSH$$aMice, Transgenic 000163758 650_2 $$2MeSH$$aPositron-Emission Tomography: methods 000163758 650_2 $$2MeSH$$aReceptors, GABA: metabolism 000163758 650_2 $$2MeSH$$aReproducibility of Results 000163758 650_2 $$2MeSH$$aTauopathies: diagnostic imaging 000163758 650_2 $$2MeSH$$aTauopathies: metabolism 000163758 650_2 $$2MeSH$$atau Proteins: metabolism 000163758 7001_ $$0P:(DE-2719)9000008$$aAnglada-Huguet, Marta$$b1$$udzne 000163758 7001_ $$0P:(DE-2719)2541671$$aMandelkow, Eckhard$$b2$$udzne 000163758 7001_ $$00000-0002-7976-2205$$aSchmidt, Yannick$$b3 000163758 7001_ $$00000-0003-1671-2443$$aKrapf, Philipp$$b4 000163758 7001_ $$00000-0001-5818-1260$$aZlatopolskiy, Boris D$$b5 000163758 7001_ $$00000-0001-5425-3116$$aNeumaier, Bernd$$b6 000163758 7001_ $$0P:(DE-2719)2541658$$aMandelkow, Eva Maria$$b7$$udzne 000163758 7001_ $$0P:(DE-2719)2811239$$aDrzezga, Alexander$$b8$$udzne 000163758 773__ $$0PERI:(DE-600)2079384-4$$a10.1007/s12035-022-02793-8$$p3402-3413$$tMolecular neurobiology$$v59$$x0893-7648$$y2022 000163758 8564_ $$uhttps://pub.dzne.de/record/163758/files/DZNE-2022-00497.pdf$$yOpenAccess 000163758 8564_ $$uhttps://pub.dzne.de/record/163758/files/DZNE-2022-00497.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000163758 909CO $$ooai:pub.dzne.de:163758$$pdnbdelivery$$pdriver$$popenaire$$pVDB$$popen_access 000163758 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000008$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE 000163758 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2541671$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE 000163758 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2541658$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b7$$kDZNE 000163758 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)2811239$$aExternal Institute$$b8$$kExtern 000163758 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0 000163758 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x1 000163758 9141_ $$y2022 000163758 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-22 000163758 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-22 000163758 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-22 000163758 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30 000163758 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000163758 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOL NEUROBIOL : 2021$$d2022-11-22 000163758 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30 000163758 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-30$$wger 000163758 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000163758 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-22 000163758 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMOL NEUROBIOL : 2021$$d2022-11-22 000163758 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30 000163758 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-22 000163758 9201_ $$0I:(DE-2719)1013014$$kAG Mandelkow 1$$lStructural Principles of Neurodegeneration$$x0 000163758 9201_ $$0I:(DE-2719)1013015$$kAG Mandelkow 2$$lCell and Animal Models of Neurodegeneration$$x1 000163758 980__ $$ajournal 000163758 980__ $$aVDB 000163758 980__ $$aI:(DE-2719)1013014 000163758 980__ $$aI:(DE-2719)1013015 000163758 980__ $$aUNRESTRICTED 000163758 9801_ $$aFullTexts