000163766 001__ 163766
000163766 005__ 20240305115237.0
000163766 0247_ $$2pmc$$apmc:PMC8968026
000163766 0247_ $$2doi$$a10.3389/fnsyn.2022.829354
000163766 0247_ $$2altmetric$$aaltmetric:125634869
000163766 0247_ $$2pmid$$apmid:35368245
000163766 037__ $$aDZNE-2022-00505
000163766 082__ $$a610
000163766 1001_ $$0P:(DE-2719)9000914$$aGundelfinger, Eckart D$$b0$$udzne
000163766 245__ $$aOrganization of Presynaptic Autophagy-Related Processes
000163766 260__ $$aLausanne$$bFrontiers Research Foundation$$c2022
000163766 3367_ $$2DRIVER$$aarticle
000163766 3367_ $$2DataCite$$aOutput Types/Journal article
000163766 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1709568078_22643$$xReview Article
000163766 3367_ $$2BibTeX$$aARTICLE
000163766 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000163766 3367_ $$00$$2EndNote$$aJournal Article
000163766 520__ $$aBrain synapses pose special challenges on the quality control of their protein machineries as they are far away from the neuronal soma, display a high potential for plastic adaptation and have a high energy demand to fulfill their physiological tasks. This applies in particular to the presynaptic part where neurotransmitter is released from synaptic vesicles, which in turn have to be recycled and refilled in a complex membrane trafficking cycle. Pathways to remove outdated and damaged proteins include the ubiquitin-proteasome system acting in the cytoplasm as well as membrane-associated endolysosomal and the autophagy systems. Here we focus on the latter systems and review what is known about the spatial organization of autophagy and endolysomal processes within the presynapse. We provide an inventory of which components of these degradative systems were found to be present in presynaptic boutons and where they might be anchored to the presynaptic apparatus. We identify three presynaptic structures reported to interact with known constituents of membrane-based protein-degradation pathways and therefore may serve as docking stations. These are (i) scaffolding proteins of the cytomatrix at the active zone, such as Bassoon or Clarinet, (ii) the endocytic machinery localized mainly at the peri-active zone, and (iii) synaptic vesicles. Finally, we sketch scenarios, how presynaptic autophagic cargos are tagged and recruited and which cellular mechanisms may govern membrane-associated protein turnover in the presynapse.
000163766 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000163766 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x1
000163766 588__ $$aDataset connected to CrossRef, Journals: pub.dzne.de
000163766 7001_ $$aKarpova, Anna$$b1
000163766 7001_ $$aPielot, Rainer$$b2
000163766 7001_ $$0P:(DE-2719)2810922$$aGarner, Craig C.$$b3$$udzne
000163766 7001_ $$0P:(DE-2719)2811905$$aKreutz, Michael R.$$b4$$eLast author$$udzne
000163766 773__ $$0PERI:(DE-600)2592086-8$$a10.3389/fnsyn.2022.829354$$gVol. 14, p. 829354$$p829354$$tFrontiers in synaptic neuroscience$$v14$$x1663-3563$$y2022
000163766 8564_ $$uhttps://pub.dzne.de/record/163766/files/DZNE-2022-00505.pdf$$yOpenAccess
000163766 8564_ $$uhttps://pub.dzne.de/record/163766/files/DZNE-2022-00505.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000163766 909CO $$ooai:pub.dzne.de:163766$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000163766 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9000914$$aExternal Institute$$b0$$kExtern
000163766 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810922$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000163766 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811905$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000163766 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000163766 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x1
000163766 9141_ $$y2022
000163766 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2020-09-06
000163766 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-06
000163766 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000163766 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-06
000163766 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT SYNAPTIC NEURO : 2021$$d2022-11-23
000163766 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000163766 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000163766 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-13T08:55:10Z
000163766 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-13T08:55:10Z
000163766 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-13T08:55:10Z
000163766 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000163766 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000163766 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-23
000163766 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-23
000163766 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-23
000163766 9201_ $$0I:(DE-2719)5000006$$kAG Düzel$$lClinical Neurophysiology and Memory$$x0
000163766 9201_ $$0I:(DE-2719)1810001$$kAG Garner$$lSynaptopathy$$x1
000163766 980__ $$ajournal
000163766 980__ $$aVDB
000163766 980__ $$aI:(DE-2719)5000006
000163766 980__ $$aI:(DE-2719)1810001
000163766 980__ $$aUNRESTRICTED
000163766 9801_ $$aFullTexts