001     163787
005     20240320115522.0
024 7 _ |a pmc:PMC9156969
|2 pmc
024 7 _ |a 10.15252/embj.2021108882
|2 doi
024 7 _ |a 0261-4189
|2 ISSN
024 7 _ |a 1460-2075
|2 ISSN
024 7 _ |a altmetric:124834212
|2 altmetric
024 7 _ |a pmid:35298090
|2 pmid
037 _ _ |a DZNE-2022-00525
082 _ _ |a 570
100 1 _ |a Hochmair, Janine
|0 P:(DE-2719)2812812
|b 0
|e First author
|u dzne
245 _ _ |a Molecular crowding and RNA synergize to promote phase separation, microtubule interaction, and seeding of Tau condensates
260 _ _ |a Hoboken, NJ [u.a.]
|c 2022
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1654785637_6363
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a (CC BY-NC-ND)
520 _ _ |a Biomolecular condensation of the neuronal microtubule-associated protein Tau (MAPT) can be induced by coacervation with polyanions like RNA, or by molecular crowding. Tau condensates have been linked to both functional microtubule binding and pathological aggregation in neurodegenerative diseases. We find that molecular crowding and coacervation with RNA, two conditions likely coexisting in the cytosol, synergize to enable Tau condensation at physiological buffer conditions and to produce condensates with a strong affinity to charged surfaces. During condensate-mediated microtubule polymerization, their synergy enhances bundling and spatial arrangement of microtubules. We further show that different Tau condensates efficiently induce pathological Tau aggregates in cells, including accumulations at the nuclear envelope that correlate with nucleocytoplasmic transport deficits. Fluorescent lifetime imaging reveals different molecular packing densities of Tau in cellular accumulations and a condensate-like density for nuclear-envelope Tau. These findings suggest that a complex interplay between interaction partners, post-translational modifications, and molecular crowding regulates the formation and function of Tau condensates. Conditions leading to prolonged existence of Tau condensates may induce the formation of seeding-competent Tau and lead to distinct cellular Tau accumulations.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: pub.dzne.de
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Microtubules: metabolism
|2 MeSH
650 _ 2 |a Neurodegenerative Diseases: metabolism
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Protein Binding
|2 MeSH
650 _ 2 |a RNA: metabolism
|2 MeSH
650 _ 2 |a tau Proteins: metabolism
|2 MeSH
700 1 _ |a Exner, Christian
|0 0000-0001-9585-4743
|b 1
700 1 _ |a Franck, Maximilian
|0 P:(DE-2719)9000550
|b 2
|u dzne
700 1 _ |a Dominguez-Baquero, Alvaro
|0 P:(DE-2719)9000533
|b 3
|u dzne
700 1 _ |a Diez, Lisa
|0 P:(DE-2719)2812826
|b 4
|u dzne
700 1 _ |a Brognaro, Hévila
|b 5
700 1 _ |a Kraushar, Matthew L
|0 0000-0002-7359-0318
|b 6
700 1 _ |a Mielke, Thorsten
|b 7
700 1 _ |a Radbruch, Helena
|b 8
700 1 _ |a Kaniyappan, Senthilvelrajan
|0 P:(DE-2719)2812350
|b 9
|u dzne
700 1 _ |a Falke, Sven
|0 0000-0003-3409-1791
|b 10
700 1 _ |a Mandelkow, Eckhard
|0 P:(DE-2719)2541671
|b 11
|u dzne
700 1 _ |a Betzel, Christian
|0 0000-0002-3879-5019
|b 12
700 1 _ |a Wegmann, Susanne
|0 P:(DE-2719)2812695
|b 13
|e Last author
|u dzne
773 _ _ |a 10.15252/embj.2021108882
|0 PERI:(DE-600)1467419-1
|n 11
|p e108882
|t The EMBO journal
|v 41
|y 2022
|x 0261-4189
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/163787/files/Molecular%20crowding%20and%20RNA%20synergize%20to%20promote%20phase%20separation%2C%20microtubule%20interaction%2C%20and%20seeding%20of%20Tau%20condensates.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/163787/files/Molecular%20crowding%20and%20RNA%20synergize%20to%20promote%20phase%20separation%2C%20microtubule%20interaction%2C%20and%20seeding%20of%20Tau%20condensates.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:163787
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2812812
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9000550
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9000533
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2812826
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2812350
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 11
|6 P:(DE-2719)2541671
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 13
|6 P:(DE-2719)2812695
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EMBO J : 2021
|d 2022-11-12
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EMBO J : 2021
|d 2022-11-12
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
920 1 _ |0 I:(DE-2719)1810006
|k AG Wegmann
|l Protein Actions in Neurodegeneration
|x 0
920 1 _ |0 I:(DE-2719)1013014
|k AG Mandelkow 1
|l Structural Principles of Neurodegeneration
|x 1
920 1 _ |0 I:(DE-2719)1013015
|k AG Mandelkow 2
|l Cell and Animal Models of Neurodegeneration
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1810006
980 _ _ |a I:(DE-2719)1013014
980 _ _ |a I:(DE-2719)1013015
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21