001     163945
005     20230915090538.0
024 7 _ |a 10.1016/j.celrep.2022.110746
|2 doi
024 7 _ |a pmid:35476974
|2 pmid
024 7 _ |a 2211-1247
|2 ISSN
024 7 _ |a 2639-1856
|2 ISSN
024 7 _ |a altmetric:127345891
|2 altmetric
037 _ _ |a DZNE-2022-00619
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Stürner, Tomke
|0 P:(DE-2719)2811009
|b 0
|e First author
245 _ _ |a The branching code: A model of actin-driven dendrite arborization.
260 _ _ |a [New York, NY]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1657628063_13980
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The cytoskeleton is crucial for defining neuronal-type-specific dendrite morphologies. To explore how the complex interplay of actin-modulatory proteins (AMPs) can define neuronal types in vivo, we focused on the class III dendritic arborization (c3da) neuron of Drosophila larvae. Using computational modeling, we reveal that the main branches (MBs) of c3da neurons follow general models based on optimal wiring principles, while the actin-enriched short terminal branches (STBs) require an additional growth program. To clarify the cellular mechanisms that define this second step, we thus concentrated on STBs for an in-depth quantitative description of dendrite morphology and dynamics. Applying these methods systematically to mutants of six known and novel AMPs, we revealed the complementary roles of these individual AMPs in defining STB properties. Our data suggest that diverse dendrite arbors result from a combination of optimal-wiring-related growth and individualized growth programs that are neuron-type specific.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a CP: Molecular biology
|2 Other
650 _ 7 |a CP: Neuroscience
|2 Other
650 _ 7 |a Drosophila
|2 Other
650 _ 7 |a actin
|2 Other
650 _ 7 |a actin-modulatory proteins
|2 Other
650 _ 7 |a computational modeling
|2 Other
650 _ 7 |a dendrite
|2 Other
650 _ 7 |a dendritic arborization neurons
|2 Other
650 _ 7 |a morphometrics
|2 Other
650 _ 7 |a neuron
|2 Other
650 _ 7 |a optimal wiring
|2 Other
650 _ 7 |a time-lapse imaging
|2 Other
650 _ 7 |a Actins
|2 NLM Chemicals
650 _ 7 |a Drosophila Proteins
|2 NLM Chemicals
650 _ 2 |a Actins: metabolism
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Dendrites: metabolism
|2 MeSH
650 _ 2 |a Drosophila: metabolism
|2 MeSH
650 _ 2 |a Drosophila Proteins: metabolism
|2 MeSH
650 _ 2 |a Neuronal Plasticity
|2 MeSH
700 1 _ |a Ferreira Castro, André
|0 P:(DE-2719)9001459
|b 1
700 1 _ |a Philipps, Maren
|0 P:(DE-2719)9002196
|b 2
|u dzne
700 1 _ |a Cuntz, Hermann
|b 3
700 1 _ |a Tavosanis, Gaia
|0 P:(DE-2719)2810271
|b 4
|e Last author
773 _ _ |a 10.1016/j.celrep.2022.110746
|g Vol. 39, no. 4, p. 110746 -
|0 PERI:(DE-600)2649101-1
|n 4
|p 110746
|t Cell reports
|v 39
|y 2022
|x 2211-1247
856 4 _ |u https://pub.dzne.de/record/163945/files/DZNE-2022-00619.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/163945/files/DZNE-2022-00619.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:163945
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2811009
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9001459
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9002196
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2810271
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)
|0 LIC:(DE-HGF)CCBYNCNDNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL REP : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-26T13:08:57Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-26T13:08:57Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-26T13:08:57Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL REP : 2021
|d 2022-11-17
920 1 _ |0 I:(DE-2719)1013018
|k AG Tavosanis
|l Dynamics of neuronal circuits
|x 0
920 1 _ |0 I:(DE-2719)1040190
|k LAT
|l Laboratory Automation Technologies (LAT)
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1013018
980 _ _ |a I:(DE-2719)1040190
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21