001     164003
005     20240319115431.0
024 7 _ |a 10.1523/JNEUROSCI.1689-21.2022
|2 doi
024 7 _ |a pmid:35241491
|2 pmid
024 7 _ |a pmc:PMC8994542
|2 pmc
024 7 _ |a 0270-6474
|2 ISSN
024 7 _ |a 1529-2401
|2 ISSN
024 7 _ |a altmetric:126555880
|2 altmetric
037 _ _ |a DZNE-2022-00672
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Andrzejak, Ewa Izabella
|0 P:(DE-2719)2811708
|b 0
|e First author
|u dzne
245 _ _ |a Patient-Derived Anti-NMDAR Antibody Disinhibits Cortical Neuronal Networks through Dysfunction of Inhibitory Neuron Output.
260 _ _ |a Washington, DC
|c 2022
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1677859671_10796
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a (CC BY)
520 _ _ |a Anti-NMDA receptor (NMDAR) encephalitis is a severe neuropsychiatric disorder associated with autoantibodies against NMDARs, which cause a variety of symptoms from prominent psychiatric and cognitive manifestations to seizures and autonomic instability. Previous studies mainly focused on hippocampal effects of these autoantibodies, helping to explain mechanistic causes for cognitive impairment. However, antibodies' effects on higher cortical network function, where they could contribute to psychosis and/or seizures, have not been explored in detail until now. Here, we employed a patient-derived monoclonal antibody targeting the NR1 subunit of NMDAR and tested its effects on in vitro cultures of rodent cortical neurons, using imaging and electrophysiological techniques. We report that this hNR1 antibody drives cortical networks to a hyperexcitable state and disrupts mechanisms stabilizing network activity such as Npas4 signaling. Network hyperactivity is in part a result of a reduced synaptic output of inhibitory neurons, as indicated by a decreased inhibitory drive and levels of presynaptic inhibitory proteins, specifically in inhibitory-to-excitatory neuron synapses. Importantly, on a single-cell level hNR1 antibody selectively impairs NMDAR-mediated currents and synaptic transmission of cortical inhibitory neurons, yet has no effect on excitatory neurons, which contrasts with its effects on hippocampal neurons. Together, these findings provide a novel, cortex-specific mechanism of antibody-induced neuronal hyperexcitability, highlighting regional specificity underlying the pathology of autoimmune encephalitis.SIGNIFICANCE STATEMENT It is increasingly appreciated that the inadvertent activation of the immune system within CNS can underlie pathogenesis of neuropsychiatric disorders. Although the exact mechanisms remain elusive, autoantibodies derived from patients with autoimmune encephalitis pose a unique tool to study pathogenesis of neuropsychiatric states. Our analysis reveals that autoantibody against the NMDA receptor (NMDAR) has a distinct mechanism of action in the cortex, where it impairs function of inhibitory neurons leading to increased cortical network excitability, in contrast to previously described hippocampal synaptic mechanisms of information encoding, highlighting brain regional specificity. Notably, similar mechanism of NMDAR-mediated inhibitory hypofunction leading to cortical disinhibition has been suggested to underlie pathology of schizophrenia, hence our data provide new evidence for common mechanisms underlying neuropsychiatric disorders.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 1
542 _ _ |i 2022-10-13
|2 Crossref
|u https://creativecommons.org/licenses/by-nc-sa/4.0/
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a NMDAR
|2 Other
650 _ 7 |a autoantibodies
|2 Other
650 _ 7 |a autoimmune encephalitis
|2 Other
650 _ 7 |a cortical interneurons
|2 Other
650 _ 7 |a network excitability
|2 Other
650 _ 7 |a Autoantibodies
|2 NLM Chemicals
650 _ 7 |a Receptors, N-Methyl-D-Aspartate
|2 NLM Chemicals
650 _ 2 |a Autoantibodies: metabolism
|2 MeSH
650 _ 2 |a Encephalitis
|2 MeSH
650 _ 2 |a Hashimoto Disease
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Neurons: physiology
|2 MeSH
650 _ 2 |a Receptors, N-Methyl-D-Aspartate: metabolism
|2 MeSH
650 _ 2 |a Seizures: metabolism
|2 MeSH
700 1 _ |a Rabinovitch, Eshed
|b 1
700 1 _ |a Kreye, Jakob
|0 P:(DE-2719)2811468
|b 2
|u dzne
700 1 _ |a Prüss, Harald
|0 P:(DE-2719)2810931
|b 3
|u dzne
700 1 _ |a Rosenmund, Christian
|0 0000-0002-3905-2444
|b 4
700 1 _ |a Ziv, Noam E
|0 0000-0001-9197-326X
|b 5
700 1 _ |a Garner, Craig Curtis
|0 P:(DE-2719)2810922
|b 6
|u dzne
700 1 _ |a Ackermann, Frauke
|0 P:(DE-2719)2810967
|b 7
|e Last author
|u dzne
773 1 8 |a 10.1523/jneurosci.1689-21.2022
|b Society for Neuroscience
|d 2022-03-03
|n 15
|p 3253-3270
|3 journal-article
|2 Crossref
|t The Journal of Neuroscience
|v 42
|y 2022
|x 0270-6474
773 _ _ |a 10.1523/JNEUROSCI.1689-21.2022
|g Vol. 42, no. 15, p. 3253 - 3270
|0 PERI:(DE-600)1475274-8
|n 15
|p 3253-3270
|t The journal of neuroscience
|v 42
|y 2022
|x 0270-6474
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/164003/files/DZNE-2022-00672.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/164003/files/DZNE-2022-00672.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:164003
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2811708
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2811468
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2810931
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2810922
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2810967
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 1
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEUROSCI : 2021
|d 2022-11-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-13
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-13
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NEUROSCI : 2021
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-13
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-13
920 1 _ |0 I:(DE-2719)1810001
|k AG Garner
|l Synaptopathy
|x 0
920 1 _ |0 I:(DE-2719)1810003
|k AG Prüß
|l Autoimmune Enzephalopathies
|x 1
920 1 _ |0 I:(DE-2719)1813004
|k AG Ackermann
|l Astrocyte - Synapse Interaction
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1810001
980 _ _ |a I:(DE-2719)1810003
980 _ _ |a I:(DE-2719)1813004
980 1 _ |a FullTexts
999 C 5 |9 -- missing cx lookup --
|a 10.1523/JNEUROSCI.0187-13.2013
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/336185a0
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nn.2447
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/361031a0
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nature12743
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroscience.2015.10.033
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1523/JNEUROSCI.0229-13.2014
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1113/jphysiol.2012.227462
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1056/NEJMra1708712
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1002/ana.21050
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.7554/eLife.12727
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1212/WNL.0000000000007475
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1124/mol.113.089334
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1523/JNEUROSCI.4980-04.2005
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1146/annurev.neuro.31.060407.125631
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1523/JNEUROSCI.0064-12.2012
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/S0166-2236(02)00040-1
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.3389/fnins.2017.00579
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1523/JNEUROSCI.2181-19.2020
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1523/JNEUROSCI.2213-07.2007
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1523/JNEUROSCI.0167-10.2010
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1093/brain/awq113
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1186/1471-2202-14-17
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/S0893-133X(98)00060-8
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1111/bph.12127
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1126/scitranslmed.aaw0044
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1186/s12915-014-0083-3
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.3389/fneur.2019.00586
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1007/s004240050915
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s41598-019-41849-z
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1093/brain/aww208
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1001/archpsyc.1994.03950030035004
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1523/JNEUROSCI.1245-12.2012
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1126/science.1067081
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1002/acn3.444
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1186/1750-1172-5-31
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1371/journal.pone.0017311
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/S0091-679X(03)01007-0
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1093/brain/aws092
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1371/journal.pbio.1000136
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1002/ana.24195
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuropharm.2011.01.022
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuron.2016.12.015
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.biopsych.2018.01.018
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1093/schbul/sbab030
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1093/brain/awu310
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1002/ana.24721
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.cell.2014.03.058
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1002/cne.10905
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1111/epi.14662
|2 Crossref
999 C 5 |2 Crossref
|u Teppola H , Okujeni S , Linne ML , Egert U (2018) AMPA, NMDA and GABAA receptor mediated network burst dynamics in cortical cultures in vitro. arXiv:1802.00217.
999 C 5 |9 -- missing cx lookup --
|a 10.3389/fncel.2019.00377
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/S1474-4422(12)70310-1
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nrn2774
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.brainres.2020.147033
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1093/brain/awaa250
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1126/science.1086907
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1093/brain/awv257
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.brainres.2015.12.027
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.nbd.2011.09.019
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1152/jn.00079.2008
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21