001     164026
005     20240313115344.0
024 7 _ |a pmc:PMC9294015
|2 pmc
024 7 _ |a 10.1007/s00415-022-11068-0
|2 doi
024 7 _ |a pmid:35348856
|2 pmid
024 7 _ |a 0012-1037
|2 ISSN
024 7 _ |a 0340-5354
|2 ISSN
024 7 _ |a 0939-1517
|2 ISSN
024 7 _ |a 1432-1459
|2 ISSN
024 7 _ |a 1619-800X
|2 ISSN
024 7 _ |a altmetric:125541735
|2 altmetric
024 7 _ |a 0367-004x
|2 ISSN
024 7 _ |a 0367-004X
|2 ISSN
037 _ _ |a DZNE-2022-00689
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Bouzigues, Arabella
|0 0000-0002-0267-8590
|b 0
245 _ _ |a Anomia is present pre-symptomatically in frontotemporal dementia due to MAPT mutations.
260 _ _ |a Berlin
|c 2022
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1658317712_13898
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a ISSN 1432-1459 not unique: **2 hits**.(CC BY)
520 _ _ |a A third of frontotemporal dementia (FTD) is caused by an autosomal-dominant genetic mutation in one of three genes: microtubule-associated protein tau (MAPT), chromosome 9 open reading frame 72 (C9orf72) and progranulin (GRN). Prior studies of prodromal FTD have identified impaired executive function and social cognition early in the disease but few have studied naming in detail.We investigated performance on the Boston Naming Test (BNT) in the GENetic Frontotemporal dementia Initiative cohort of 499 mutation carriers and 248 mutation-negative controls divided across three genetic groups: C9orf72, MAPT and GRN. Mutation carriers were further divided into 3 groups according to their global CDR plus NACC FTLD score: 0 (asymptomatic), 0.5 (prodromal) and 1 + (fully symptomatic). Groups were compared using a bootstrapped linear regression model, adjusting for age, sex, language and education. Finally, we identified neural correlates of anomia within carriers of each genetic group using a voxel-based morphometry analysis.All symptomatic groups performed worse on the BNT than controls with the MAPT symptomatic group scoring the worst. Furthermore, MAPT asymptomatic and prodromal groups performed significantly worse than controls. Correlates of anomia in MAPT mutation carriers included bilateral anterior temporal lobe regions and the anterior insula. Similar bilateral anterior temporal lobe involvement was seen in C9orf72 mutation carriers as well as more widespread left frontal atrophy. In GRN mutation carriers, neural correlates were limited to the left hemisphere, and involved frontal, temporal, insula and striatal regions.This study suggests the development of early anomia in MAPT mutation carriers, likely to be associated with impaired semantic knowledge. Clinical trials focused on the prodromal period within individuals with MAPT mutations should use language tasks, such as the BNT for patient stratification and as outcome measures.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
542 _ _ |i 2022-03-29
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2022-03-29
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a C9orf72
|2 Other
650 _ 7 |a Cognition
|2 Other
650 _ 7 |a Frontotemporal dementia
|2 Other
650 _ 7 |a Naming
|2 Other
650 _ 7 |a Progranulin
|2 Other
650 _ 7 |a Tau
|2 Other
650 _ 2 |a Anomia: complications
|2 MeSH
650 _ 2 |a C9orf72 Protein: genetics
|2 MeSH
650 _ 2 |a Frontotemporal Dementia: complications
|2 MeSH
650 _ 2 |a Frontotemporal Dementia: diagnostic imaging
|2 MeSH
650 _ 2 |a Frontotemporal Dementia: genetics
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Mutation
|2 MeSH
650 _ 2 |a Progranulins: genetics
|2 MeSH
650 _ 2 |a tau Proteins: genetics
|2 MeSH
700 1 _ |a Russell, Lucy L
|0 0000-0001-5023-5893
|b 1
700 1 _ |a Peakman, Georgia
|0 0000-0002-3319-138X
|b 2
700 1 _ |a Bocchetta, Martina
|0 0000-0003-1814-5024
|b 3
700 1 _ |a Greaves, Caroline V
|0 0000-0002-6446-1960
|b 4
700 1 _ |a Convery, Rhian S
|0 0000-0002-9477-1812
|b 5
700 1 _ |a Todd, Emily
|b 6
700 1 _ |a Rowe, James B
|0 0000-0001-7216-8679
|b 7
700 1 _ |a Borroni, Barbara
|b 8
700 1 _ |a Galimberti, Daniela
|b 9
700 1 _ |a Tiraboschi, Pietro
|b 10
700 1 _ |a Masellis, Mario
|b 11
700 1 _ |a Tartaglia, Maria Carmela
|b 12
700 1 _ |a Finger, Elizabeth
|0 0000-0003-4461-7427
|b 13
700 1 _ |a van Swieten, John C
|0 0000-0001-6278-6844
|b 14
700 1 _ |a Seelaar, Harro
|b 15
700 1 _ |a Jiskoot, Lize
|b 16
700 1 _ |a Sorbi, Sandro
|b 17
700 1 _ |a Butler, Chris R
|b 18
700 1 _ |a Graff, Caroline
|b 19
700 1 _ |a Gerhard, Alexander
|b 20
700 1 _ |a Langheinrich, Tobias
|b 21
700 1 _ |a Laforce, Robert
|b 22
700 1 _ |a Sanchez-Valle, Raquel
|b 23
700 1 _ |a de Mendonça, Alexandre
|b 24
700 1 _ |a Moreno, Fermin
|b 25
700 1 _ |a Synofzik, Matthis
|0 P:(DE-2719)2811275
|b 26
|u dzne
700 1 _ |a Vandenberghe, Rik
|b 27
700 1 _ |a Ducharme, Simon
|b 28
700 1 _ |a Le Ber, Isabelle
|b 29
700 1 _ |a Levin, Johannes
|0 P:(DE-2719)2811659
|b 30
|u dzne
700 1 _ |a Danek, Adrian
|0 P:(DE-2719)2810712
|b 31
|u dzne
700 1 _ |a Otto, Markus
|0 0000-0002-6647-5944
|b 32
700 1 _ |a Pasquier, Florence
|b 33
700 1 _ |a Santana, Isabel
|b 34
700 1 _ |a Rohrer, Jonathan D
|b 35
700 1 _ |a Genetic FTD Initiative, GENFI
|b 36
|e Collaboration Author
700 1 _ |a Esteve, Aitana Sogorb
|b 37
700 1 _ |a Nelson, Annabel
|b 38
700 1 _ |a Bouzigues, Arabella
|b 39
700 1 _ |a Heller, Carolin
|b 40
700 1 _ |a Greaves, Caroline V
|b 41
700 1 _ |a Cash, David
|b 42
700 1 _ |a Thomas, David L
|b 43
700 1 _ |a Todd, Emily
|b 44
700 1 _ |a Benotmane, Hanya
|b 45
700 1 _ |a Zetterberg, Henrik
|b 46
700 1 _ |a Swift, Imogen J
|b 47
700 1 _ |a Nicholas, Jennifer
|b 48
700 1 _ |a Samra, Kiran
|b 49
700 1 _ |a Russell, Lucy L
|b 50
700 1 _ |a Bocchetta, Martina
|b 51
700 1 _ |a Shafei, Rachelle
|b 52
700 1 _ |a Convery, Rhian S
|b 53
700 1 _ |a Timberlake, Carolyn
|b 54
700 1 _ |a Cope, Thomas
|b 55
700 1 _ |a Rittman, Timothy
|b 56
700 1 _ |a Benussi, Alberto
|b 57
700 1 _ |a Premi, Enrico
|b 58
700 1 _ |a Gasparotti, Roberto
|b 59
700 1 _ |a Archetti, Silvana
|b 60
700 1 _ |a Gazzina, Stefano
|b 61
700 1 _ |a Cantoni, Valentina
|b 62
700 1 _ |a Arighi, Andrea
|b 63
700 1 _ |a Fenoglio, Chiara
|b 64
700 1 _ |a Scarpini, Elio
|b 65
700 1 _ |a Fumagalli, Giorgio
|b 66
700 1 _ |a Borracci, Vittoria
|b 67
700 1 _ |a Rossi, Giacomina
|b 68
700 1 _ |a Giaccone, Giorgio
|b 69
700 1 _ |a Caroppo, Paola
|b 70
700 1 _ |a Tiraboschi, Pietro
|b 71
700 1 _ |a Prioni, Sara
|b 72
700 1 _ |a Redaelli, Veronica
|b 73
700 1 _ |a Tang-Wai, David
|b 74
700 1 _ |a Rogaeva, Ekaterina
|b 75
700 1 _ |a Castelo-Branco, Miguel
|b 76
700 1 _ |a Keren, Ron
|b 77
700 1 _ |a Black, Sandra
|b 78
700 1 _ |a Mitchell, Sara
|b 79
700 1 _ |a Shoesmith, Christen
|b 80
700 1 _ |a Bartha, Robart
|b 81
700 1 _ |a Rademakers, Rosa
|b 82
700 1 _ |a Poos, Jackie
|b 83
700 1 _ |a Papma, Janne M
|b 84
700 1 _ |a Giannini, Lucia
|b 85
700 1 _ |a Minkelen, Rick
|b 86
700 1 _ |a Pijnenburg, Yolande
|b 87
700 1 _ |a Nacmias, Benedetta
|b 88
700 1 _ |a Ferrari, Camilla
|b 89
700 1 _ |a Polito, Cristina
|b 90
700 1 _ |a Lombardi, Gemma
|b 91
700 1 _ |a Bessi, Valentina
|b 92
700 1 _ |a Veldsman, Michele
|b 93
700 1 _ |a Andersson, Christin
|b 94
700 1 _ |a Thonberg, Hakan
|b 95
700 1 _ |a Öijerstedt, Linn
|b 96
700 1 _ |a Jelic, Vesna
|b 97
700 1 _ |a Thompson, Paul
|b 98
700 1 _ |a Langheinrich, Tobias
|b 99
700 1 _ |a Lladó, Albert
|b 100
700 1 _ |a Antonell, Anna
|b 101
700 1 _ |a Olives, Jaume
|b 102
700 1 _ |a Balasa, Mircea
|b 103
700 1 _ |a Bargalló, Nuria
|b 104
700 1 _ |a Borrego-Ecija, Sergi
|b 105
700 1 _ |a Verdelho, Ana
|b 106
700 1 _ |a Maruta, Carolina
|b 107
700 1 _ |a Ferreira, Catarina B
|b 108
700 1 _ |a Miltenberger, Gabriel
|b 109
700 1 _ |a do Couto, Frederico Simões
|b 110
700 1 _ |a Gabilondo, Alazne
|b 111
700 1 _ |a Gorostidi, Ana
|b 112
700 1 _ |a Villanua, Jorge
|b 113
700 1 _ |a Cañada, Marta
|b 114
700 1 _ |a Tainta, Mikel
|b 115
700 1 _ |a Zulaica, Miren
|b 116
700 1 _ |a Barandiaran, Myriam
|b 117
700 1 _ |a Alves, Patricia
|b 118
700 1 _ |a Bender, Benjamin
|0 P:(DE-2719)9001506
|b 119
|u dzne
700 1 _ |a Wilke, Carlo
|0 P:(DE-2719)2814101
|b 120
|u dzne
700 1 _ |a Graf, Lisa
|0 P:(DE-2719)9001369
|b 121
|u dzne
700 1 _ |a Vogels, Annick
|b 122
700 1 _ |a Vandenbulcke, Mathieu
|b 123
700 1 _ |a Van Damme, Philip
|b 124
700 1 _ |a Bruffaerts, Rose
|b 125
700 1 _ |a Poesen, Koen
|b 126
700 1 _ |a Rosa-Neto, Pedro
|b 127
700 1 _ |a Gauthier, Serge
|b 128
700 1 _ |a Camuzat, Agnès
|b 129
700 1 _ |a Brice, Alexis
|b 130
700 1 _ |a Bertrand, Anne
|b 131
700 1 _ |a Funkiewiez, Aurélie
|b 132
700 1 _ |a Rinaldi, Daisy
|b 133
700 1 _ |a Saracino, Dario
|b 134
700 1 _ |a Colliot, Olivier
|b 135
700 1 _ |a Sayah, Sabrina
|b 136
700 1 _ |a Prix, Catharina
|0 P:(DE-2719)9001508
|b 137
|u dzne
700 1 _ |a Wlasich, Elisabeth
|b 138
700 1 _ |a Wagemann, Olivia
|0 P:(DE-2719)9001249
|b 139
|u dzne
700 1 _ |a Loosli, Sandra
|b 140
700 1 _ |a Schönecker, Sonja
|b 141
700 1 _ |a Hoegen, Tobias
|b 142
700 1 _ |a Lombardi, Jolina
|b 143
700 1 _ |a Anderl-Straub, Sarah
|b 144
700 1 _ |a Rollin, Adeline
|b 145
700 1 _ |a Kuchcinski, Gregory
|b 146
700 1 _ |a Bertoux, Maxime
|b 147
700 1 _ |a Lebouvier, Thibaud
|b 148
700 1 _ |a Deramecourt, Vincent
|b 149
700 1 _ |a Santiago, Beatriz
|b 150
700 1 _ |a Duro, Diana
|b 151
700 1 _ |a Leitão, Maria João
|b 152
700 1 _ |a Almeida, Maria Rosario
|b 153
700 1 _ |a Tábuas-Pereira, Miguel
|b 154
700 1 _ |a Afonso, Sónia
|b 155
700 1 _ |a Engel, Annerose
|b 156
700 1 _ |a Polyakova, Maryna
|b 157
773 1 8 |a 10.1007/s00415-022-11068-0
|b Springer Science and Business Media LLC
|d 2022-03-29
|n 8
|p 4322-4332
|3 journal-article
|2 Crossref
|t Journal of Neurology
|v 269
|y 2022
|x 0340-5354
773 _ _ |a 10.1007/s00415-022-11068-0
|0 PERI:(DE-600)1421299-7
|n 8
|p 4322-4332
|t Journal of neurology
|v 269
|y 2022
|x 0340-5354
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/164026/files/DZNE-2022-00689.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/164026/files/DZNE-2022-00689.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:164026
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 26
|6 P:(DE-2719)2811275
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 30
|6 P:(DE-2719)2811659
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 31
|6 P:(DE-2719)2810712
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 119
|6 P:(DE-2719)9001506
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 120
|6 P:(DE-2719)2814101
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 121
|6 P:(DE-2719)9001369
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 137
|6 P:(DE-2719)9001508
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 139
|6 P:(DE-2719)9001249
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEUROL : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NEUROL : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
920 1 _ |0 I:(DE-2719)1210000
|k AG Gasser 1
|l Parkinson Genetics
|x 0
920 1 _ |0 I:(DE-2719)1111016
|k Clinical Dementia Research München
|l Clinical Dementia Research München
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1210000
980 _ _ |a I:(DE-2719)1111016
980 1 _ |a FullTexts
999 C 5 |a 10.1136/jnnp.70.3.323
|9 -- missing cx lookup --
|1 JS Snowden
|p 323 -
|2 Crossref
|u Snowden JS (2001) Distinct behavioural profiles in frontotemporal dementia and semantic dementia. J Neurol Neurosurg Psychiatry 70(3):323–332. https://doi.org/10.1136/jnnp.70.3.323
|t J Neurol Neurosurg Psychiatry
|v 70
|y 2001
999 C 5 |a 10.1212/WNL.0b013e3181bf997a
|9 -- missing cx lookup --
|1 JD Rohrer
|p 1451 -
|2 Crossref
|u Rohrer JD et al (2009) The heritability and genetics of frontotemporal lobar degeneration. Neurology 73(18):1451–1456. https://doi.org/10.1212/WNL.0b013e3181bf997a
|t Neurology
|v 73
|y 2009
999 C 5 |a 10.3233/JAD-150806
|9 -- missing cx lookup --
|1 CJD Hardy
|p 359 -
|2 Crossref
|u Hardy CJD et al (2016) The language profile of behavioral variant frontotemporal dementia. J Alzheimers Dis 50(2):359–371. https://doi.org/10.3233/JAD-150806
|t J Alzheimers Dis
|v 50
|y 2016
999 C 5 |a 10.1016/S1474-4422(14)70233-9
|9 -- missing cx lookup --
|1 JD Rohrer
|p 291 -
|2 Crossref
|u Rohrer JD et al (2015) C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis. Lancet Neurol 14(3):291–301. https://doi.org/10.1016/S1474-4422(14)70233-9
|t Lancet Neurol
|v 14
|y 2015
999 C 5 |a 10.3109/21678421.2015.1074700
|9 -- missing cx lookup --
|1 JS Snowden
|p 497 -
|2 Crossref
|u Snowden JS et al (2015) Distinct clinical and pathological phenotypes in frontotemporal dementia associated with MAPT, PGRN and C9orf72 mutations. Amyotroph Lateral Scler Front Degener 16(7–8):497–505. https://doi.org/10.3109/21678421.2015.1074700
|t Amyotroph Lateral Scler Front Degener
|v 16
|y 2015
999 C 5 |a 10.2174/156720509788929264
|9 -- missing cx lookup --
|1 EJ Rogalski
|p 331 -
|2 Crossref
|u Rogalski EJ, Mesulam MM (2009) Clinical trajectories and biological features of primary progressive aphasia (PPA). Curr Alzheimer Res 6(4):331–336. https://doi.org/10.2174/156720509788929264
|t Curr Alzheimer Res
|v 6
|y 2009
999 C 5 |a 10.1001/jamaneurol.2016.2016
|9 -- missing cx lookup --
|1 KG Ranasinghe
|p 1078 -
|2 Crossref
|u Ranasinghe KG et al (2016) Distinct subtypes of behavioral variant frontotemporal dementia based on patterns of network degeneration. JAMA Neurol 73(9):1078–1088. https://doi.org/10.1001/jamaneurol.2016.2016
|t JAMA Neurol
|v 73
|y 2016
999 C 5 |a 10.1136/jnnp-2017-315667
|9 -- missing cx lookup --
|1 JA Saxon
|p 675 -
|2 Crossref
|u Saxon JA et al (2017) Examining the language and behavioural profile in FTD and ALS-FTD. J Neurol Neurosurg Psychiatry 88(8):675–680. https://doi.org/10.1136/jnnp-2017-315667
|t J Neurol Neurosurg Psychiatry
|v 88
|y 2017
999 C 5 |a 10.1016/j.cortex.2019.04.027
|9 -- missing cx lookup --
|1 JS Snowden
|p 22 -
|2 Crossref
|u Snowden JS et al (2019) Naming and conceptual understanding in frontotemporal dementia. Cortex 120:22–35. https://doi.org/10.1016/j.cortex.2019.04.027
|t Cortex
|v 120
|y 2019
999 C 5 |a 10.1159/000077163
|9 -- missing cx lookup --
|1 C McMillan
|p 320 -
|2 Crossref
|u McMillan C, Gee J, Moore P, Dennis K, DeVita C, Grossman M (2004) Confrontation naming and morphometric analyses of structural mri in frontotemporal dementia. Dement Geriatr Cogn Disord 17(4):320–323. https://doi.org/10.1159/000077163
|t Dement Geriatr Cogn Disord
|v 17
|y 2004
999 C 5 |a 10.1093/brain/awh075
|9 -- missing cx lookup --
|1 M Grossman
|p 628 -
|2 Crossref
|u Grossman M et al (2004) What’s in a name: voxel-based morphometric analyses of MRI and naming difficulty in Alzheimer’s disease, frontotemporal dementia and corticobasal degeneration. Brain 127(3):628–649. https://doi.org/10.1093/brain/awh075
|t Brain
|v 127
|y 2004
999 C 5 |a 10.1016/j.neurobiolaging.2017.10.008
|9 -- missing cx lookup --
|1 DM Cash
|p 191 -
|2 Crossref
|u Cash DM et al (2018) Patterns of gray matter atrophy in genetic frontotemporal dementia: results from the GENFI study. Neurobiol Aging 62:191–196. https://doi.org/10.1016/j.neurobiolaging.2017.10.008
|t Neurobiol Aging
|v 62
|y 2018
999 C 5 |2 Crossref
|u Kaplan E, Goodglass H, Weintraub S (2001) The Boston Naming Test: Pro- Ed
999 C 5 |a 10.1097/WAD.0b013e318191c7dd
|9 -- missing cx lookup --
|1 S Weintraub
|p 91 -
|2 Crossref
|u Weintraub S et al (2009) The Alzheimer’s disease centers’ uniform data set (UDS): the neuropsychological test battery. Alzheimer Dis Assoc Disord 23(2):91–101. https://doi.org/10.1097/WAD.0b013e318191c7dd
|t Alzheimer Dis Assoc Disord
|v 23
|y 2009
999 C 5 |a 10.1002/alz.12033
|9 -- missing cx lookup --
|1 T Miyagawa
|p 106 -
|2 Crossref
|u Miyagawa T et al (2020) Utility of the global CDR® plus NACC FTLD rating and development of scoring rules: data from the ARTFL/LEFFTDS Consortium. Alzheimers Dement J Alzheimers Assoc 16(1):106–117. https://doi.org/10.1002/alz.12033
|t Alzheimers Dement J Alzheimers Assoc
|v 16
|y 2020
999 C 5 |a 10.1016/j.neuroimage.2007.07.007
|9 -- missing cx lookup --
|1 J Ashburner
|p 95 -
|2 Crossref
|u Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38(1):95–113. https://doi.org/10.1016/j.neuroimage.2007.07.007
|t Neuroimage
|v 38
|y 2007
999 C 5 |a 10.1016/j.neuroimage.2008.08.045
|9 -- missing cx lookup --
|1 GR Ridgway
|p 99 -
|2 Crossref
|u Ridgway GR, Omar R, Ourselin S, Hill DLG, Warren JD, Fox NC (2009) Issues with threshold masking in voxel-based morphometry of atrophied brains. Neuroimage 44(1):99–111. https://doi.org/10.1016/j.neuroimage.2008.08.045
|t Neuroimage
|v 44
|y 2009
999 C 5 |a 10.1016/j.neuroimage.2014.09.034
|9 -- missing cx lookup --
|1 IB Malone
|p 366 -
|2 Crossref
|u Malone IB et al (2015) Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance. Neuroimage 104:366–372. https://doi.org/10.1016/j.neuroimage.2014.09.034
|t Neuroimage
|v 104
|y 2015
999 C 5 |a 10.1007/s00415-018-8850-7
|9 -- missing cx lookup --
|1 LC Jiskoot
|p 1381 -
|2 Crossref
|u Jiskoot LC et al (2018) Longitudinal cognitive biomarkers predicting symptom onset in presymptomatic frontotemporal dementia. J Neurol 265(6):1381–1392. https://doi.org/10.1007/s00415-018-8850-7
|t J Neurol
|v 265
|y 2018
999 C 5 |a 10.1017/S1355617718001005
|9 -- missing cx lookup --
|1 G Cheran
|p 184 -
|2 Crossref
|u Cheran G et al (2019) Cognitive indicators of preclinical behavioral variant frontotemporal dementia in MAPT carriers. J Int Neuropsychol Soc 25(2):184–194. https://doi.org/10.1017/S1355617718001005
|t J Int Neuropsychol Soc
|v 25
|y 2019
999 C 5 |a 10.1016/j.neuroimage.2005.10.008
|9 -- missing cx lookup --
|1 PJ Nestor
|p 1010 -
|2 Crossref
|u Nestor PJ, Fryer TD, Hodges JR (2006) Declarative memory impairments in Alzheimer’s disease and semantic dementia. Neuroimage 30(3):1010–1020. https://doi.org/10.1016/j.neuroimage.2005.10.008
|t Neuroimage
|v 30
|y 2006
999 C 5 |a 10.1080/23279095.2020.1716357
|1 K Moore
|9 -- missing cx lookup --
|2 Crossref
|u Moore K et al (2020) A modified Camel and Cactus Test detects presymptomatic semantic impairment in genetic frontotemporal dementia within the GENFI cohort. Appl Neuropsychol Adult. https://doi.org/10.1080/23279095.2020.1716357
|t Appl Neuropsychol Adult
|y 2020
999 C 5 |a 10.1093/brain/awq272
|9 -- missing cx lookup --
|1 M Mion
|p 3256 -
|2 Crossref
|u Mion M et al (2010) What the left and right anterior fusiform gyri tell us about semantic memory. Brain 133(11):3256–3268. https://doi.org/10.1093/brain/awq272
|t Brain
|v 133
|y 2010
999 C 5 |a 10.1002/ana.10825
|9 -- missing cx lookup --
|1 ML Gorno-Tempini
|p 335 -
|2 Crossref
|u Gorno-Tempini ML et al (2004) Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol 55(3):335–346. https://doi.org/10.1002/ana.10825
|t Ann Neurol
|v 55
|y 2004
999 C 5 |a 10.1212/WNL.0b013e3181a4124e
|9 -- missing cx lookup --
|1 JD Rohrer
|p 1562 -
|2 Crossref
|u Rohrer JD et al (2009) Patterns of cortical thinning in the language variants of frontotemporal lobar degeneration. Neurology 72(18):1562–1569. https://doi.org/10.1212/WNL.0b013e3181a4124e
|t Neurology
|v 72
|y 2009
999 C 5 |a 10.1523/JNEUROSCI.5544-10.2011
|9 -- missing cx lookup --
|1 E Rogalski
|p 3344 -
|2 Crossref
|u Rogalski E et al (2011) Anatomy of language impairments in primary progressive aphasia. J Neurosci 31(9):3344–3350. https://doi.org/10.1523/JNEUROSCI.5544-10.2011
|t J Neurosci
|v 31
|y 2011
999 C 5 |a 10.1016/j.neuroimage.2017.12.068
|9 -- missing cx lookup --
|1 SM Wilson
|p 62 -
|2 Crossref
|u Wilson SM, Bautista A, McCarron A (2018) Convergence of spoken and written language processing in the superior temporal sulcus. Neuroimage 171:62–74. https://doi.org/10.1016/j.neuroimage.2017.12.068
|t Neuroimage
|v 171
|y 2018
999 C 5 |a 10.1177/1073858412440596
|9 -- missing cx lookup --
|1 ML Seghier
|p 43 -
|2 Crossref
|u Seghier ML (2013) The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist 19(1):43–61. https://doi.org/10.1177/1073858412440596
|t Neuroscientist
|v 19
|y 2013
999 C 5 |a 10.1016/S1474-4422(07)70266-1
|9 -- missing cx lookup --
|1 JR Hodges
|p 1004 -
|2 Crossref
|u Hodges JR, Patterson K (2007) Semantic dementia: a unique clinicopathological syndrome. Lancet Neurol 6(11):1004–1014. https://doi.org/10.1016/S1474-4422(07)70266-1
|t Lancet Neurol
|v 6
|y 2007
999 C 5 |a 10.1016/j.cortex.2012.09.014
|9 -- missing cx lookup --
|1 SA Savage
|p 1823 -
|2 Crossref
|u Savage SA, Ballard KJ, Piguet O, Hodges JR (2013) Bringing words back to mind—improving word production in semantic dementia. Cortex 49(7):1823–1832. https://doi.org/10.1016/j.cortex.2012.09.014
|t Cortex
|v 49
|y 2013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21