000164030 001__ 164030
000164030 005__ 20250414105535.0
000164030 0247_ $$2doi$$a10.1007/s11011-022-00973-y
000164030 0247_ $$2pmid$$apmid:35543713
000164030 0247_ $$2ISSN$$a0885-7490
000164030 0247_ $$2ISSN$$a1573-7365
000164030 0247_ $$2altmetric$$aaltmetric:128109598
000164030 037__ $$aDZNE-2022-00693
000164030 041__ $$aEnglish
000164030 082__ $$a610
000164030 1001_ $$aLiu, Chunxin$$b0
000164030 245__ $$aBasal metabolic rate and risk of multiple sclerosis: a Mendelian randomization study.
000164030 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2022
000164030 3367_ $$2DRIVER$$aarticle
000164030 3367_ $$2DataCite$$aOutput Types/Journal article
000164030 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1744620857_11312
000164030 3367_ $$2BibTeX$$aARTICLE
000164030 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000164030 3367_ $$00$$2EndNote$$aJournal Article
000164030 520__ $$aTo determine the relationship between basal metabolic rate (BMR) and multiple sclerosis (MS) susceptibility, we analyzed genome-wide association study (GWAS) summary statistics data from the International Multiple Sclerosis Genetics Consortium on a total of 115,803 participants of European descent, including 47,429 patients with MS and 68,374 controls. We selected 378 independent genetic variants strongly associated with BMR in a GWAS involving 454,874 participants as instrumental variables to examine a potential causal relationship between BMR and MS. A genetically predicted higher BMR was associated with a greater risk of MS (odds ratio [OR]: 1.283 per one standard deviation increase in BMR, 95% confidence interval [CI]: 1.108-1.486, P = 0.001). Moreover, we used the lasso method to eliminate heterogeneity (Q statistic = 384.58, P = 0.370). There was no pleiotropy in our study and no bias was found in the sensitivity analysis using the leave-one-out test. We provide novel evidence that a higher BMR is an independent causal risk factor in the development of MS. Further work is warranted to elucidate the potential mechanisms.
000164030 536__ $$0G:(DE-HGF)POF4-354$$a354 - Disease Prevention and Healthy Aging (POF4-354)$$cPOF4-354$$fPOF IV$$x0
000164030 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000164030 650_7 $$2Other$$aBasal metabolic rate
000164030 650_7 $$2Other$$aGenome-wide association study
000164030 650_7 $$2Other$$aMendelian randomization
000164030 650_7 $$2Other$$aMultiple sclerosis
000164030 650_2 $$2MeSH$$aBasal Metabolism: genetics
000164030 650_2 $$2MeSH$$aGenome-Wide Association Study
000164030 650_2 $$2MeSH$$aHumans
000164030 650_2 $$2MeSH$$aMendelian Randomization Analysis
000164030 650_2 $$2MeSH$$aMultiple Sclerosis: epidemiology
000164030 650_2 $$2MeSH$$aMultiple Sclerosis: genetics
000164030 650_2 $$2MeSH$$aPolymorphism, Single Nucleotide: genetics
000164030 7001_ $$aLu, Yaxin$$b1
000164030 7001_ $$aChen, Jingjing$$b2
000164030 7001_ $$aQiu, Wei$$b3
000164030 7001_ $$0P:(DE-2719)9000829$$aZhan, Yiqiang$$b4$$udzne
000164030 7001_ $$00000-0002-1392-8698$$aLiu, Zifeng$$b5
000164030 773__ $$0PERI:(DE-600)2018067-6$$a10.1007/s11011-022-00973-y$$n6$$p1855-1861$$tMetabolic brain disease$$v37$$x0885-7490$$y2022
000164030 8564_ $$uhttps://pub.dzne.de/record/164030/files/DZNE-2022-00693_Restricted.pdf
000164030 8564_ $$uhttps://pub.dzne.de/record/164030/files/DZNE-2022-00693_Restricted.pdf?subformat=pdfa$$xpdfa
000164030 909CO $$ooai:pub.dzne.de:164030$$pVDB
000164030 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000829$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000164030 9131_ $$0G:(DE-HGF)POF4-354$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Prevention and Healthy Aging$$x0
000164030 9141_ $$y2022
000164030 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-27$$wger
000164030 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000164030 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000164030 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000164030 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-11$$wger
000164030 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMETAB BRAIN DIS : 2021$$d2022-11-11
000164030 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000164030 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000164030 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11
000164030 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11
000164030 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000164030 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000164030 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-11
000164030 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-11
000164030 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000164030 9201_ $$0I:(DE-2719)1910005$$kAG Zhan$$lNeuroepidemiology$$x0
000164030 980__ $$ajournal
000164030 980__ $$aVDB
000164030 980__ $$aI:(DE-2719)1910005
000164030 980__ $$aUNRESTRICTED