001     164030
005     20250414105535.0
024 7 _ |a 10.1007/s11011-022-00973-y
|2 doi
024 7 _ |a pmid:35543713
|2 pmid
024 7 _ |a 0885-7490
|2 ISSN
024 7 _ |a 1573-7365
|2 ISSN
024 7 _ |a altmetric:128109598
|2 altmetric
037 _ _ |a DZNE-2022-00693
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Liu, Chunxin
|b 0
245 _ _ |a Basal metabolic rate and risk of multiple sclerosis: a Mendelian randomization study.
260 _ _ |a Dordrecht [u.a.]
|c 2022
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1744620857_11312
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To determine the relationship between basal metabolic rate (BMR) and multiple sclerosis (MS) susceptibility, we analyzed genome-wide association study (GWAS) summary statistics data from the International Multiple Sclerosis Genetics Consortium on a total of 115,803 participants of European descent, including 47,429 patients with MS and 68,374 controls. We selected 378 independent genetic variants strongly associated with BMR in a GWAS involving 454,874 participants as instrumental variables to examine a potential causal relationship between BMR and MS. A genetically predicted higher BMR was associated with a greater risk of MS (odds ratio [OR]: 1.283 per one standard deviation increase in BMR, 95% confidence interval [CI]: 1.108-1.486, P = 0.001). Moreover, we used the lasso method to eliminate heterogeneity (Q statistic = 384.58, P = 0.370). There was no pleiotropy in our study and no bias was found in the sensitivity analysis using the leave-one-out test. We provide novel evidence that a higher BMR is an independent causal risk factor in the development of MS. Further work is warranted to elucidate the potential mechanisms.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Basal metabolic rate
|2 Other
650 _ 7 |a Genome-wide association study
|2 Other
650 _ 7 |a Mendelian randomization
|2 Other
650 _ 7 |a Multiple sclerosis
|2 Other
650 _ 2 |a Basal Metabolism: genetics
|2 MeSH
650 _ 2 |a Genome-Wide Association Study
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Mendelian Randomization Analysis
|2 MeSH
650 _ 2 |a Multiple Sclerosis: epidemiology
|2 MeSH
650 _ 2 |a Multiple Sclerosis: genetics
|2 MeSH
650 _ 2 |a Polymorphism, Single Nucleotide: genetics
|2 MeSH
700 1 _ |a Lu, Yaxin
|b 1
700 1 _ |a Chen, Jingjing
|b 2
700 1 _ |a Qiu, Wei
|b 3
700 1 _ |a Zhan, Yiqiang
|0 P:(DE-2719)9000829
|b 4
|u dzne
700 1 _ |a Liu, Zifeng
|0 0000-0002-1392-8698
|b 5
773 _ _ |a 10.1007/s11011-022-00973-y
|0 PERI:(DE-600)2018067-6
|n 6
|p 1855-1861
|t Metabolic brain disease
|v 37
|y 2022
|x 0885-7490
856 4 _ |u https://pub.dzne.de/record/164030/files/DZNE-2022-00693_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/164030/files/DZNE-2022-00693_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:164030
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)9000829
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
914 1 _ |y 2022
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-11
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b METAB BRAIN DIS : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-11
920 1 _ |0 I:(DE-2719)1910005
|k AG Zhan
|l Neuroepidemiology
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1910005
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21