Home > Publications Database > Basal metabolic rate and risk of multiple sclerosis: a Mendelian randomization study. > print |
001 | 164030 | ||
005 | 20250414105535.0 | ||
024 | 7 | _ | |a 10.1007/s11011-022-00973-y |2 doi |
024 | 7 | _ | |a pmid:35543713 |2 pmid |
024 | 7 | _ | |a 0885-7490 |2 ISSN |
024 | 7 | _ | |a 1573-7365 |2 ISSN |
024 | 7 | _ | |a altmetric:128109598 |2 altmetric |
037 | _ | _ | |a DZNE-2022-00693 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Liu, Chunxin |b 0 |
245 | _ | _ | |a Basal metabolic rate and risk of multiple sclerosis: a Mendelian randomization study. |
260 | _ | _ | |a Dordrecht [u.a.] |c 2022 |b Springer Science + Business Media B.V |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1744620857_11312 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a To determine the relationship between basal metabolic rate (BMR) and multiple sclerosis (MS) susceptibility, we analyzed genome-wide association study (GWAS) summary statistics data from the International Multiple Sclerosis Genetics Consortium on a total of 115,803 participants of European descent, including 47,429 patients with MS and 68,374 controls. We selected 378 independent genetic variants strongly associated with BMR in a GWAS involving 454,874 participants as instrumental variables to examine a potential causal relationship between BMR and MS. A genetically predicted higher BMR was associated with a greater risk of MS (odds ratio [OR]: 1.283 per one standard deviation increase in BMR, 95% confidence interval [CI]: 1.108-1.486, P = 0.001). Moreover, we used the lasso method to eliminate heterogeneity (Q statistic = 384.58, P = 0.370). There was no pleiotropy in our study and no bias was found in the sensitivity analysis using the leave-one-out test. We provide novel evidence that a higher BMR is an independent causal risk factor in the development of MS. Further work is warranted to elucidate the potential mechanisms. |
536 | _ | _ | |a 354 - Disease Prevention and Healthy Aging (POF4-354) |0 G:(DE-HGF)POF4-354 |c POF4-354 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
650 | _ | 7 | |a Basal metabolic rate |2 Other |
650 | _ | 7 | |a Genome-wide association study |2 Other |
650 | _ | 7 | |a Mendelian randomization |2 Other |
650 | _ | 7 | |a Multiple sclerosis |2 Other |
650 | _ | 2 | |a Basal Metabolism: genetics |2 MeSH |
650 | _ | 2 | |a Genome-Wide Association Study |2 MeSH |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Mendelian Randomization Analysis |2 MeSH |
650 | _ | 2 | |a Multiple Sclerosis: epidemiology |2 MeSH |
650 | _ | 2 | |a Multiple Sclerosis: genetics |2 MeSH |
650 | _ | 2 | |a Polymorphism, Single Nucleotide: genetics |2 MeSH |
700 | 1 | _ | |a Lu, Yaxin |b 1 |
700 | 1 | _ | |a Chen, Jingjing |b 2 |
700 | 1 | _ | |a Qiu, Wei |b 3 |
700 | 1 | _ | |a Zhan, Yiqiang |0 P:(DE-2719)9000829 |b 4 |u dzne |
700 | 1 | _ | |a Liu, Zifeng |0 0000-0002-1392-8698 |b 5 |
773 | _ | _ | |a 10.1007/s11011-022-00973-y |0 PERI:(DE-600)2018067-6 |n 6 |p 1855-1861 |t Metabolic brain disease |v 37 |y 2022 |x 0885-7490 |
856 | 4 | _ | |u https://pub.dzne.de/record/164030/files/DZNE-2022-00693_Restricted.pdf |
856 | 4 | _ | |u https://pub.dzne.de/record/164030/files/DZNE-2022-00693_Restricted.pdf?subformat=pdfa |x pdfa |
909 | C | O | |p VDB |o oai:pub.dzne.de:164030 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 4 |6 P:(DE-2719)9000829 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-354 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Prevention and Healthy Aging |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2021-01-27 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-01-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2022-11-11 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b METAB BRAIN DIS : 2021 |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-11 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-11 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-11 |
920 | 1 | _ | |0 I:(DE-2719)1910005 |k AG Zhan |l Neuroepidemiology |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-2719)1910005 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|