001     164042
005     20230915090545.0
024 7 _ |a pmc:PMC9170783
|2 pmc
024 7 _ |a 10.1016/j.molmet.2022.101503
|2 doi
024 7 _ |a pmid:35452878
|2 pmid
024 7 _ |a altmetric:127473992
|2 altmetric
037 _ _ |a DZNE-2022-00705
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Jackson, Joshua
|0 P:(DE-2719)2814190
|b 0
|e First author
|u dzne
245 _ _ |a SGPL1 stimulates VPS39 recruitment to the mitochondria in MICU1 deficient cells.
260 _ _ |a Oxford [u.a.]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1653380475_26606
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Mitochondrial 'retrograde' signaling may stimulate organelle biogenesis as a compensatory adaptation to aberrant activity of the oxidative phosphorylation (OXPHOS) system. To maintain energy-consuming processes in OXPHOS deficient cells, alternative metabolic pathways are functionally coupled to the degradation, recycling and redistribution of biomolecules across distinct intracellular compartments. While transcriptional regulation of mitochondrial network expansion has been the focus of many studies, the molecular mechanisms promoting mitochondrial maintenance in energy-deprived cells remain poorly investigated.We performed transcriptomics, quantitative proteomics and lifespan assays to identify pathways that are mechanistically linked to mitochondrial network expansion and homeostasis in Caenorhabditis elegans lacking the mitochondrial calcium uptake protein 1 (MICU-1/MICU1). To support our findings, we carried out biochemical and image analyses in mammalian cells and mouse-derived tissues.We report that micu-1(null) mutations impair the OXPHOS system and promote C. elegans longevity through a transcriptional program that is independent of the mitochondrial calcium uniporter MCU-1/MCU and the essential MCU regulator EMRE-1/EMRE. We identify sphingosine phosphate lyase SPL-1/SGPL1 and the ATFS-1-target HOPS complex subunit VPS-39/VPS39 as critical lifespan modulators of micu-1(null) mutant animals. Cross-species investigation indicates that SGPL1 upregulation stimulates VPS39 recruitment to the mitochondria, thereby enhancing mitochondria-lysosome contacts. Consistently, VPS39 downregulation compromises mitochondrial network maintenance and basal autophagic flux in MICU1 deficient cells. In mouse-derived muscles, we show that VPS39 recruitment to the mitochondria may represent a common signature associated with altered OXPHOS system.Our findings reveal a previously unrecognized SGPL1/VPS39 axis that stimulates intracellular organelle interactions and sustains autophagy and mitochondrial homeostasis in OXPHOS deficient cells.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 1
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 2
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Autophagy
|2 Other
650 _ 7 |a Caenorhabditis elegans
|2 Other
650 _ 7 |a Longevity
|2 Other
650 _ 7 |a MICU1
|2 Other
650 _ 7 |a Mitochondria
|2 Other
650 _ 7 |a Sphingosine signaling
|2 Other
650 _ 7 |a VPS39
|2 Other
650 _ 2 |a Aldehyde-Lyases: metabolism
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Autophagy-Related Proteins: metabolism
|2 MeSH
650 _ 2 |a Caenorhabditis elegans
|2 MeSH
650 _ 2 |a Caenorhabditis elegans Proteins: metabolism
|2 MeSH
650 _ 2 |a Calcium-Binding Proteins: genetics
|2 MeSH
650 _ 2 |a Calcium-Binding Proteins: metabolism
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Mitochondria: metabolism
|2 MeSH
650 _ 2 |a Mitochondrial Membrane Transport Proteins: metabolism
|2 MeSH
650 _ 2 |a Oxidative Phosphorylation
|2 MeSH
650 _ 2 |a Vesicular Transport Proteins: metabolism
|2 MeSH
700 1 _ |a Wischhof, Lena
|0 P:(DE-2719)2811527
|b 1
|u dzne
700 1 _ |a Scifo, Enzo
|0 P:(DE-2719)2812562
|b 2
|u dzne
700 1 _ |a Pellizzer, Anna
|0 P:(DE-2719)9000693
|b 3
|u dzne
700 1 _ |a Wang, Yiru
|0 P:(DE-2719)9001250
|b 4
|u dzne
700 1 _ |a Piazzesi, Antonia
|0 P:(DE-2719)2811171
|b 5
|u dzne
700 1 _ |a Gentile, Debora
|0 P:(DE-2719)9000991
|b 6
|u dzne
700 1 _ |a Siddig, Sana
|0 P:(DE-2719)9000992
|b 7
|u dzne
700 1 _ |a Stork, Miriam
|0 P:(DE-2719)2810452
|b 8
|u dzne
700 1 _ |a Hopkins, Chris E
|b 9
700 1 _ |a Händler, Kristian
|0 P:(DE-2719)2812735
|b 10
|u dzne
700 1 _ |a Weis, Joachim
|b 11
700 1 _ |a Roos, Andreas
|b 12
700 1 _ |a Schultze, Joachim L
|0 P:(DE-2719)2811660
|b 13
|u dzne
700 1 _ |a Nicotera, Pierluigi
|0 P:(DE-2719)2010732
|b 14
|u dzne
700 1 _ |a Ehninger, Dan
|0 P:(DE-2719)2289209
|b 15
|u dzne
700 1 _ |a Bano, Daniele
|0 P:(DE-2719)2158358
|b 16
|e Last author
|u dzne
773 _ _ |a 10.1016/j.molmet.2022.101503
|g Vol. 61, p. 101503 -
|0 PERI:(DE-600)2708735-9
|p 101503
|t Molecular metabolism
|v 61
|y 2022
|x 2212-8778
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/164042/files/1-s2.0-S2212877822000722-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/164042/files/1-s2.0-S2212877822000722-main.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:164042
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2814190
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2811527
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2812562
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9000693
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)9001250
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2811171
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)9000991
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)9000992
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2810452
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)2812735
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 13
|6 P:(DE-2719)2811660
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 14
|6 P:(DE-2719)2010732
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 15
|6 P:(DE-2719)2289209
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 16
|6 P:(DE-2719)2158358
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 1
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 2
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-04
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)
|0 LIC:(DE-HGF)CCBYNCNDNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL METAB : 2021
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-26T13:08:57Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-26T13:08:57Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-26T13:08:57Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-15
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MOL METAB : 2021
|d 2022-11-15
920 1 _ |0 I:(DE-2719)1013003
|k AG Bano
|l Aging and neurodegeneration
|x 0
920 1 _ |0 I:(DE-2719)1013005
|k AG Ehninger
|l Translational Biogerontology
|x 1
920 1 _ |0 I:(DE-2719)1013031
|k AG Schultze
|l United epigenomic platform
|x 2
920 1 _ |0 I:(DE-2719)5000031
|k R&D PRECISE
|l Platform for Single Cell Genomics and Epigenomics at DZNE & University of Bonn
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013003
980 _ _ |a I:(DE-2719)1013005
980 _ _ |a I:(DE-2719)1013031
980 _ _ |a I:(DE-2719)5000031
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21