000164282 001__ 164282
000164282 005__ 20250717160443.0
000164282 0247_ $$2doi$$a10.1073/pnas.2005203117
000164282 0247_ $$2pmid$$apmid:33257581
000164282 0247_ $$2pmc$$apmc:PMC7749343
000164282 0247_ $$2ISSN$$a0027-8424
000164282 0247_ $$2ISSN$$a1091-6490
000164282 0247_ $$2altmetric$$aaltmetric:95573262
000164282 037__ $$aDZNE-2022-00936
000164282 041__ $$aEnglish
000164282 082__ $$a500
000164282 1001_ $$00000-0002-9803-9127$$aBrugger, Manuel S$$b0
000164282 245__ $$aVibration enhanced cell growth induced by surface acoustic waves as in vitro wound-healing model.
000164282 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2020
000164282 3367_ $$2DRIVER$$aarticle
000164282 3367_ $$2DataCite$$aOutput Types/Journal article
000164282 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1752761031_26643
000164282 3367_ $$2BibTeX$$aARTICLE
000164282 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000164282 3367_ $$00$$2EndNote$$aJournal Article
000164282 520__ $$aWe report on in vitro wound-healing and cell-growth studies under the influence of radio-frequency (rf) cell stimuli. These stimuli are supplied either by piezoactive surface acoustic waves (SAWs) or by microelectrode-generated electric fields, both at frequencies around 100 MHz. Employing live-cell imaging, we studied the time- and power-dependent healing of artificial wounds on a piezoelectric chip for different cell lines. If the cell stimulation is mediated by piezomechanical SAWs, we observe a pronounced, significant maximum of the cell-growth rate at a specific SAW amplitude, resulting in an increase of the wound-healing speed of up to 135 ± 85% as compared to an internal reference. In contrast, cells being stimulated only by electrical fields of the same magnitude as the ones exposed to SAWs exhibit no significant effect. In this study, we investigate this effect for different wavelengths, amplitude modulation of the applied electrical rf signal, and different wave modes. Furthermore, to obtain insight into the biological response to the stimulus, we also determined both the cell-proliferation rate and the cellular stress levels. While the proliferation rate is significantly increased for a wide power range, cell stress remains low and within the normal range. Our findings demonstrate that SAW-based vibrational cell stimulation bears the potential for an alternative method to conventional ultrasound treatment, overcoming some of its limitations.
000164282 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000164282 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000164282 650_7 $$2Other$$acell growth
000164282 650_7 $$2Other$$acell migration
000164282 650_7 $$2Other$$astimulation
000164282 650_7 $$2Other$$asurface acoustic waves
000164282 650_7 $$2Other$$avibration
000164282 650_7 $$2NLM Chemicals$$aReactive Oxygen Species
000164282 650_2 $$2MeSH$$aAcoustic Stimulation: adverse effects
000164282 650_2 $$2MeSH$$aAcoustic Stimulation: instrumentation
000164282 650_2 $$2MeSH$$aAcoustic Stimulation: methods
000164282 650_2 $$2MeSH$$aAnimals
000164282 650_2 $$2MeSH$$aCell Line
000164282 650_2 $$2MeSH$$aCell Line, Tumor
000164282 650_2 $$2MeSH$$aCell Movement: radiation effects
000164282 650_2 $$2MeSH$$aCell Proliferation: radiation effects
000164282 650_2 $$2MeSH$$aCombined Modality Therapy: adverse effects
000164282 650_2 $$2MeSH$$aCombined Modality Therapy: instrumentation
000164282 650_2 $$2MeSH$$aCombined Modality Therapy: methods
000164282 650_2 $$2MeSH$$aDogs
000164282 650_2 $$2MeSH$$aElectrodes
000164282 650_2 $$2MeSH$$aHumans
000164282 650_2 $$2MeSH$$aMadin Darby Canine Kidney Cells
000164282 650_2 $$2MeSH$$aOxidative Stress: drug effects
000164282 650_2 $$2MeSH$$aReactive Oxygen Species
000164282 650_2 $$2MeSH$$aSound: adverse effects
000164282 650_2 $$2MeSH$$aVibration: therapeutic use
000164282 650_2 $$2MeSH$$aWound Healing: radiation effects
000164282 7001_ $$00000-0002-7008-9739$$aBaumgartner, Kathrin$$b1
000164282 7001_ $$aMauritz, Sophie C F$$b2
000164282 7001_ $$00000-0002-2477-0822$$aGerlach, Stefan C$$b3
000164282 7001_ $$aRöder, Florian$$b4
000164282 7001_ $$0P:(DE-2719)2812339$$aSchlosser, Christine$$b5$$udzne
000164282 7001_ $$0P:(DE-2719)2000007$$aFluhrer, Regina$$b6$$udzne
000164282 7001_ $$00000-0002-9399-9946$$aWixforth, Achim$$b7
000164282 7001_ $$00000-0001-7103-7060$$aWesterhausen, Christoph$$b8
000164282 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.2005203117$$gVol. 117, no. 50, p. 31603 - 31613$$n50$$p31603 - 31613$$tProceedings of the National Academy of Sciences of the United States of America$$v117$$x0027-8424$$y2020
000164282 8564_ $$uhttps://pub.dzne.de/record/164282/files/DZNE-2022-00936_Restricted.pdf
000164282 8564_ $$uhttps://pub.dzne.de/record/164282/files/DZNE-2022-00936_Restricted.pdf?subformat=pdfa$$xpdfa
000164282 909CO $$ooai:pub.dzne.de:164282$$pVDB
000164282 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)2812339$$aExternal Institute$$b5$$kExtern
000164282 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2000007$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000164282 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000164282 9141_ $$y2020
000164282 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000164282 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29
000164282 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000164282 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-08$$wger
000164282 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-08
000164282 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-08
000164282 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-08
000164282 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-08
000164282 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-08
000164282 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-08
000164282 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-08
000164282 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-08
000164282 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2021$$d2022-11-08
000164282 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-08
000164282 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-08
000164282 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bP NATL ACAD SCI USA : 2021$$d2022-11-08
000164282 9201_ $$0I:(DE-2719)6000016$$kMünchen common$$lMünchen common$$x0
000164282 980__ $$ajournal
000164282 980__ $$aVDB
000164282 980__ $$aI:(DE-2719)6000016
000164282 980__ $$aUNRESTRICTED