000164287 001__ 164287
000164287 005__ 20240222115046.0
000164287 0247_ $$2doi$$a10.1016/j.neuron.2020.08.030
000164287 0247_ $$2pmid$$apmid:32976770
000164287 0247_ $$2pmc$$apmc:PMC7736499
000164287 0247_ $$2ISSN$$a0896-6273
000164287 0247_ $$2ISSN$$a1097-4199
000164287 0247_ $$2altmetric$$aaltmetric:91138655
000164287 037__ $$aDZNE-2022-00941
000164287 041__ $$aEnglish
000164287 082__ $$a610
000164287 1001_ $$0P:(DE-2719)2811625$$aHenneberger, Christian$$b0$$eFirst author$$udzne
000164287 245__ $$aLTP Induction Boosts Glutamate Spillover by Driving Withdrawal of Perisynaptic Astroglia.
000164287 260__ $$aNew York, NY$$bElsevier$$c2020
000164287 3367_ $$2DRIVER$$aarticle
000164287 3367_ $$2DataCite$$aOutput Types/Journal article
000164287 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1708515046_22069
000164287 3367_ $$2BibTeX$$aARTICLE
000164287 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000164287 3367_ $$00$$2EndNote$$aJournal Article
000164287 520__ $$aExtrasynaptic actions of glutamate are limited by high-affinity transporters expressed by perisynaptic astroglial processes (PAPs): this helps maintain point-to-point transmission in excitatory circuits. Memory formation in the brain is associated with synaptic remodeling, but how this affects PAPs and therefore extrasynaptic glutamate actions is poorly understood. Here, we used advanced imaging methods, in situ and in vivo, to find that a classical synaptic memory mechanism, long-term potentiation (LTP), triggers withdrawal of PAPs from potentiated synapses. Optical glutamate sensors combined with patch-clamp and 3D molecular localization reveal that LTP induction thus prompts spatial retreat of astroglial glutamate transporters, boosting glutamate spillover and NMDA-receptor-mediated inter-synaptic cross-talk. The LTP-triggered PAP withdrawal involves NKCC1 transporters and the actin-controlling protein cofilin but does not depend on major Ca2+-dependent cascades in astrocytes. We have therefore uncovered a mechanism by which a memory trace at one synapse could alter signal handling by multiple neighboring connections.
000164287 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000164287 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000164287 650_7 $$2Other$$aExcitatory synapse
000164287 650_7 $$2Other$$aastrocyte plasticity
000164287 650_7 $$2Other$$abarrel cortex
000164287 650_7 $$2Other$$aglutamate sensor imaging
000164287 650_7 $$2Other$$aglutamate spillover
000164287 650_7 $$2Other$$ahippocampus
000164287 650_7 $$2Other$$along-term potentiation
000164287 650_7 $$2Other$$aperisynaptic astroglial processes
000164287 650_7 $$2Other$$asuper-resolution microscopy
000164287 650_7 $$2Other$$awhisker stimulation
000164287 650_7 $$03KX376GY7L$$2NLM Chemicals$$aGlutamic Acid
000164287 650_2 $$2MeSH$$aAnimals
000164287 650_2 $$2MeSH$$aAstrocytes: metabolism
000164287 650_2 $$2MeSH$$aAstrocytes: ultrastructure
000164287 650_2 $$2MeSH$$aFemale
000164287 650_2 $$2MeSH$$aGlutamic Acid: metabolism
000164287 650_2 $$2MeSH$$aImaging, Three-Dimensional: methods
000164287 650_2 $$2MeSH$$aLong-Term Potentiation: physiology
000164287 650_2 $$2MeSH$$aMale
000164287 650_2 $$2MeSH$$aMice
000164287 650_2 $$2MeSH$$aMice, Inbred C57BL
000164287 650_2 $$2MeSH$$aMice, Knockout
000164287 650_2 $$2MeSH$$aMice, Transgenic
000164287 650_2 $$2MeSH$$aOrgan Culture Techniques
000164287 650_2 $$2MeSH$$aRats
000164287 650_2 $$2MeSH$$aRats, Sprague-Dawley
000164287 650_2 $$2MeSH$$aRats, Wistar
000164287 650_2 $$2MeSH$$aSynapses: metabolism
000164287 650_2 $$2MeSH$$aSynapses: ultrastructure
000164287 7001_ $$aBard, Lucie$$b1
000164287 7001_ $$aPanatier, Aude$$b2
000164287 7001_ $$aReynolds, James P$$b3
000164287 7001_ $$aKopach, Olga$$b4
000164287 7001_ $$aMedvedev, Nikolay I$$b5
000164287 7001_ $$aMinge, Daniel$$b6
000164287 7001_ $$aHerde, Michel K$$b7
000164287 7001_ $$aAnders, Stefanie$$b8
000164287 7001_ $$aKraev, Igor$$b9
000164287 7001_ $$aHeller, Janosch P$$b10
000164287 7001_ $$aRama, Sylvain$$b11
000164287 7001_ $$aZheng, Kaiyu$$b12
000164287 7001_ $$aJensen, Thomas P$$b13
000164287 7001_ $$aSanchez-Romero, Inmaculada$$b14
000164287 7001_ $$aJackson, Colin J$$b15
000164287 7001_ $$aJanovjak, Harald$$b16
000164287 7001_ $$aOttersen, Ole Petter$$b17
000164287 7001_ $$aNagelhus, Erlend Arnulf$$b18
000164287 7001_ $$aOliet, Stephane H R$$b19
000164287 7001_ $$aStewart, Michael G$$b20
000164287 7001_ $$aNägerl, U Valentin$$b21
000164287 7001_ $$aRusakov, Dmitri A$$b22
000164287 773__ $$0PERI:(DE-600)2001944-0$$a10.1016/j.neuron.2020.08.030$$gVol. 108, no. 5, p. 919 - 936.e11$$n5$$p919 - 936.e11$$tNeuron$$v108$$x0896-6273$$y2020
000164287 8564_ $$uhttps://pub.dzne.de/record/164287/files/DZNE-2022-00941.pdf$$yOpenAccess
000164287 8564_ $$uhttps://pub.dzne.de/record/164287/files/DZNE-2022-00941.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000164287 909CO $$ooai:pub.dzne.de:164287$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000164287 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811625$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000164287 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000164287 9141_ $$y2020
000164287 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-16
000164287 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000164287 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-16
000164287 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-04
000164287 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-16
000164287 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNEURON : 2021$$d2022-11-16
000164287 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURON : 2021$$d2022-11-16
000164287 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000164287 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-16
000164287 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000164287 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-16
000164287 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-16
000164287 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-16
000164287 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000164287 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-16$$wger
000164287 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-16
000164287 9201_ $$0I:(DE-2719)1013029$$kAG Henneberger$$lSynaptic and Glial Plasticity$$x0
000164287 980__ $$ajournal
000164287 980__ $$aVDB
000164287 980__ $$aUNRESTRICTED
000164287 980__ $$aI:(DE-2719)1013029
000164287 9801_ $$aFullTexts