| Home > Publications Database > LTP Induction Boosts Glutamate Spillover by Driving Withdrawal of Perisynaptic Astroglia. > print |
| 001 | 164287 | ||
| 005 | 20240222115046.0 | ||
| 024 | 7 | _ | |a 10.1016/j.neuron.2020.08.030 |2 doi |
| 024 | 7 | _ | |a pmid:32976770 |2 pmid |
| 024 | 7 | _ | |a pmc:PMC7736499 |2 pmc |
| 024 | 7 | _ | |a 0896-6273 |2 ISSN |
| 024 | 7 | _ | |a 1097-4199 |2 ISSN |
| 024 | 7 | _ | |a altmetric:91138655 |2 altmetric |
| 037 | _ | _ | |a DZNE-2022-00941 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Henneberger, Christian |0 P:(DE-2719)2811625 |b 0 |e First author |u dzne |
| 245 | _ | _ | |a LTP Induction Boosts Glutamate Spillover by Driving Withdrawal of Perisynaptic Astroglia. |
| 260 | _ | _ | |a New York, NY |c 2020 |b Elsevier |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1708515046_22069 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Extrasynaptic actions of glutamate are limited by high-affinity transporters expressed by perisynaptic astroglial processes (PAPs): this helps maintain point-to-point transmission in excitatory circuits. Memory formation in the brain is associated with synaptic remodeling, but how this affects PAPs and therefore extrasynaptic glutamate actions is poorly understood. Here, we used advanced imaging methods, in situ and in vivo, to find that a classical synaptic memory mechanism, long-term potentiation (LTP), triggers withdrawal of PAPs from potentiated synapses. Optical glutamate sensors combined with patch-clamp and 3D molecular localization reveal that LTP induction thus prompts spatial retreat of astroglial glutamate transporters, boosting glutamate spillover and NMDA-receptor-mediated inter-synaptic cross-talk. The LTP-triggered PAP withdrawal involves NKCC1 transporters and the actin-controlling protein cofilin but does not depend on major Ca2+-dependent cascades in astrocytes. We have therefore uncovered a mechanism by which a memory trace at one synapse could alter signal handling by multiple neighboring connections. |
| 536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
| 650 | _ | 7 | |a Excitatory synapse |2 Other |
| 650 | _ | 7 | |a astrocyte plasticity |2 Other |
| 650 | _ | 7 | |a barrel cortex |2 Other |
| 650 | _ | 7 | |a glutamate sensor imaging |2 Other |
| 650 | _ | 7 | |a glutamate spillover |2 Other |
| 650 | _ | 7 | |a hippocampus |2 Other |
| 650 | _ | 7 | |a long-term potentiation |2 Other |
| 650 | _ | 7 | |a perisynaptic astroglial processes |2 Other |
| 650 | _ | 7 | |a super-resolution microscopy |2 Other |
| 650 | _ | 7 | |a whisker stimulation |2 Other |
| 650 | _ | 7 | |a Glutamic Acid |0 3KX376GY7L |2 NLM Chemicals |
| 650 | _ | 2 | |a Animals |2 MeSH |
| 650 | _ | 2 | |a Astrocytes: metabolism |2 MeSH |
| 650 | _ | 2 | |a Astrocytes: ultrastructure |2 MeSH |
| 650 | _ | 2 | |a Female |2 MeSH |
| 650 | _ | 2 | |a Glutamic Acid: metabolism |2 MeSH |
| 650 | _ | 2 | |a Imaging, Three-Dimensional: methods |2 MeSH |
| 650 | _ | 2 | |a Long-Term Potentiation: physiology |2 MeSH |
| 650 | _ | 2 | |a Male |2 MeSH |
| 650 | _ | 2 | |a Mice |2 MeSH |
| 650 | _ | 2 | |a Mice, Inbred C57BL |2 MeSH |
| 650 | _ | 2 | |a Mice, Knockout |2 MeSH |
| 650 | _ | 2 | |a Mice, Transgenic |2 MeSH |
| 650 | _ | 2 | |a Organ Culture Techniques |2 MeSH |
| 650 | _ | 2 | |a Rats |2 MeSH |
| 650 | _ | 2 | |a Rats, Sprague-Dawley |2 MeSH |
| 650 | _ | 2 | |a Rats, Wistar |2 MeSH |
| 650 | _ | 2 | |a Synapses: metabolism |2 MeSH |
| 650 | _ | 2 | |a Synapses: ultrastructure |2 MeSH |
| 700 | 1 | _ | |a Bard, Lucie |b 1 |
| 700 | 1 | _ | |a Panatier, Aude |b 2 |
| 700 | 1 | _ | |a Reynolds, James P |b 3 |
| 700 | 1 | _ | |a Kopach, Olga |b 4 |
| 700 | 1 | _ | |a Medvedev, Nikolay I |b 5 |
| 700 | 1 | _ | |a Minge, Daniel |b 6 |
| 700 | 1 | _ | |a Herde, Michel K |b 7 |
| 700 | 1 | _ | |a Anders, Stefanie |b 8 |
| 700 | 1 | _ | |a Kraev, Igor |b 9 |
| 700 | 1 | _ | |a Heller, Janosch P |b 10 |
| 700 | 1 | _ | |a Rama, Sylvain |b 11 |
| 700 | 1 | _ | |a Zheng, Kaiyu |b 12 |
| 700 | 1 | _ | |a Jensen, Thomas P |b 13 |
| 700 | 1 | _ | |a Sanchez-Romero, Inmaculada |b 14 |
| 700 | 1 | _ | |a Jackson, Colin J |b 15 |
| 700 | 1 | _ | |a Janovjak, Harald |b 16 |
| 700 | 1 | _ | |a Ottersen, Ole Petter |b 17 |
| 700 | 1 | _ | |a Nagelhus, Erlend Arnulf |b 18 |
| 700 | 1 | _ | |a Oliet, Stephane H R |b 19 |
| 700 | 1 | _ | |a Stewart, Michael G |b 20 |
| 700 | 1 | _ | |a Nägerl, U Valentin |b 21 |
| 700 | 1 | _ | |a Rusakov, Dmitri A |b 22 |
| 773 | _ | _ | |a 10.1016/j.neuron.2020.08.030 |g Vol. 108, no. 5, p. 919 - 936.e11 |0 PERI:(DE-600)2001944-0 |n 5 |p 919 - 936.e11 |t Neuron |v 108 |y 2020 |x 0896-6273 |
| 856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/164287/files/DZNE-2022-00941.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/164287/files/DZNE-2022-00941.pdf?subformat=pdfa |
| 909 | C | O | |o oai:pub.dzne.de:164287 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 0 |6 P:(DE-2719)2811625 |
| 913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-16 |
| 915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NEURON : 2021 |d 2022-11-16 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NEURON : 2021 |d 2022-11-16 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-16 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-16 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2022-11-16 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-16 |
| 920 | 1 | _ | |0 I:(DE-2719)1013029 |k AG Henneberger |l Synaptic and Glial Plasticity |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-2719)1013029 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|