001     164287
005     20240222115046.0
024 7 _ |a 10.1016/j.neuron.2020.08.030
|2 doi
024 7 _ |a pmid:32976770
|2 pmid
024 7 _ |a pmc:PMC7736499
|2 pmc
024 7 _ |a 0896-6273
|2 ISSN
024 7 _ |a 1097-4199
|2 ISSN
024 7 _ |a altmetric:91138655
|2 altmetric
037 _ _ |a DZNE-2022-00941
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Henneberger, Christian
|0 P:(DE-2719)2811625
|b 0
|e First author
|u dzne
245 _ _ |a LTP Induction Boosts Glutamate Spillover by Driving Withdrawal of Perisynaptic Astroglia.
260 _ _ |a New York, NY
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1708515046_22069
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Extrasynaptic actions of glutamate are limited by high-affinity transporters expressed by perisynaptic astroglial processes (PAPs): this helps maintain point-to-point transmission in excitatory circuits. Memory formation in the brain is associated with synaptic remodeling, but how this affects PAPs and therefore extrasynaptic glutamate actions is poorly understood. Here, we used advanced imaging methods, in situ and in vivo, to find that a classical synaptic memory mechanism, long-term potentiation (LTP), triggers withdrawal of PAPs from potentiated synapses. Optical glutamate sensors combined with patch-clamp and 3D molecular localization reveal that LTP induction thus prompts spatial retreat of astroglial glutamate transporters, boosting glutamate spillover and NMDA-receptor-mediated inter-synaptic cross-talk. The LTP-triggered PAP withdrawal involves NKCC1 transporters and the actin-controlling protein cofilin but does not depend on major Ca2+-dependent cascades in astrocytes. We have therefore uncovered a mechanism by which a memory trace at one synapse could alter signal handling by multiple neighboring connections.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Excitatory synapse
|2 Other
650 _ 7 |a astrocyte plasticity
|2 Other
650 _ 7 |a barrel cortex
|2 Other
650 _ 7 |a glutamate sensor imaging
|2 Other
650 _ 7 |a glutamate spillover
|2 Other
650 _ 7 |a hippocampus
|2 Other
650 _ 7 |a long-term potentiation
|2 Other
650 _ 7 |a perisynaptic astroglial processes
|2 Other
650 _ 7 |a super-resolution microscopy
|2 Other
650 _ 7 |a whisker stimulation
|2 Other
650 _ 7 |a Glutamic Acid
|0 3KX376GY7L
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Astrocytes: metabolism
|2 MeSH
650 _ 2 |a Astrocytes: ultrastructure
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Glutamic Acid: metabolism
|2 MeSH
650 _ 2 |a Imaging, Three-Dimensional: methods
|2 MeSH
650 _ 2 |a Long-Term Potentiation: physiology
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Mice, Knockout
|2 MeSH
650 _ 2 |a Mice, Transgenic
|2 MeSH
650 _ 2 |a Organ Culture Techniques
|2 MeSH
650 _ 2 |a Rats
|2 MeSH
650 _ 2 |a Rats, Sprague-Dawley
|2 MeSH
650 _ 2 |a Rats, Wistar
|2 MeSH
650 _ 2 |a Synapses: metabolism
|2 MeSH
650 _ 2 |a Synapses: ultrastructure
|2 MeSH
700 1 _ |a Bard, Lucie
|b 1
700 1 _ |a Panatier, Aude
|b 2
700 1 _ |a Reynolds, James P
|b 3
700 1 _ |a Kopach, Olga
|b 4
700 1 _ |a Medvedev, Nikolay I
|b 5
700 1 _ |a Minge, Daniel
|b 6
700 1 _ |a Herde, Michel K
|b 7
700 1 _ |a Anders, Stefanie
|b 8
700 1 _ |a Kraev, Igor
|b 9
700 1 _ |a Heller, Janosch P
|b 10
700 1 _ |a Rama, Sylvain
|b 11
700 1 _ |a Zheng, Kaiyu
|b 12
700 1 _ |a Jensen, Thomas P
|b 13
700 1 _ |a Sanchez-Romero, Inmaculada
|b 14
700 1 _ |a Jackson, Colin J
|b 15
700 1 _ |a Janovjak, Harald
|b 16
700 1 _ |a Ottersen, Ole Petter
|b 17
700 1 _ |a Nagelhus, Erlend Arnulf
|b 18
700 1 _ |a Oliet, Stephane H R
|b 19
700 1 _ |a Stewart, Michael G
|b 20
700 1 _ |a Nägerl, U Valentin
|b 21
700 1 _ |a Rusakov, Dmitri A
|b 22
773 _ _ |a 10.1016/j.neuron.2020.08.030
|g Vol. 108, no. 5, p. 919 - 936.e11
|0 PERI:(DE-600)2001944-0
|n 5
|p 919 - 936.e11
|t Neuron
|v 108
|y 2020
|x 0896-6273
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/164287/files/DZNE-2022-00941.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/164287/files/DZNE-2022-00941.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:164287
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2811625
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-16
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NEURON : 2021
|d 2022-11-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURON : 2021
|d 2022-11-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-16
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-16
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-16
920 1 _ |0 I:(DE-2719)1013029
|k AG Henneberger
|l Synaptic and Glial Plasticity
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013029
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21