000164511 001__ 164511
000164511 005__ 20231213121722.0
000164511 0247_ $$2doi$$a10.1109/CIG.2018.8490450
000164511 037__ $$aDZNE-2022-01063
000164511 1001_ $$0P:(DE-2719)2812503$$aStreck, Adam$$b0$$eFirst author$$udzne
000164511 1112_ $$aIEEE Conference on Computational Intelligence and Games (CIG)$$cMaastricht$$d2018-08-14 - 2018-08-17$$wNetherlands
000164511 245__ $$aUsing Discrete Time Markov Chains for Control of Idle Character Animation
000164511 260__ $$bIEEE$$c2018
000164511 300__ $$a1-4
000164511 3367_ $$2ORCID$$aCONFERENCE_PAPER
000164511 3367_ $$033$$2EndNote$$aConference Paper
000164511 3367_ $$2BibTeX$$aINPROCEEDINGS
000164511 3367_ $$2DRIVER$$aconferenceObject
000164511 3367_ $$2DataCite$$aOutput Types/Conference Paper
000164511 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1702460487_20234
000164511 520__ $$aThe behavior of autonomous characters in virtual environments is usually described via a complex deterministic state machine or a behavior tree driven by the current state of the system. This is very useful when a high level of control over a character is required, but it arguably does have a negative effect on the illusion of realism in the decision making process of the character. This is particularly prominent in cases where the character only exhibits idle behavior, e.g. a student sitting in a classroom. In this article we propose the use of discrete time Markov chains as the model for defining realistic non-interactive behavior and describe how to compute decision probabilities to normalize by the length of individual actions. Lastly, we argue that those allow for more precise calibration and adjustment for the idle behavior model then the models being currently employed in practice.
000164511 536__ $$0G:(DE-HGF)POF3-344$$a344 - Clinical and Health Care Research (POF3-344)$$cPOF3-344$$fPOF III$$x0
000164511 588__ $$aDataset connected to CrossRef Conference
000164511 7001_ $$0P:(DE-2719)2810583$$aWolbers, Thomas$$b1$$eLast author$$udzne
000164511 773__ $$a10.1109/CIG.2018.8490450
000164511 8564_ $$uhttps://pub.dzne.de/record/164511/files/DZNE-2022-01063_Restricted.pdf
000164511 8564_ $$uhttps://pub.dzne.de/record/164511/files/DZNE-2022-01063_Restricted.pdf?subformat=pdfa$$xpdfa
000164511 909CO $$ooai:pub.dzne.de:164511$$pVDB
000164511 9141_ $$y2018
000164511 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812503$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000164511 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810583$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000164511 9131_ $$0G:(DE-HGF)POF3-344$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vClinical and Health Care Research$$x0
000164511 9201_ $$0I:(DE-2719)1310002$$kAG Wolbers$$lAging, Cognition and Technology$$x0
000164511 980__ $$acontrib
000164511 980__ $$aVDB
000164511 980__ $$aI:(DE-2719)1310002
000164511 980__ $$aUNRESTRICTED