001     164565
005     20230915090553.0
024 7 _ |a pmc:PMC9220931
|2 pmc
024 7 _ |a 10.1172/jci.insight.147814
|2 doi
024 7 _ |a pmid:35472029
|2 pmid
024 7 _ |a altmetric:128814844
|2 altmetric
037 _ _ |a DZNE-2022-01114
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Coe, David
|b 0
245 _ _ |a Loss of voltage-gated hydrogen channel 1 expression reveals heterogeneous metabolic adaptation to intracellular acidification by T cells.
260 _ _ |a Ann Arbor, Michigan
|c 2022
|b JCI Insight
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1668680857_26688
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a (CC BY 4.0)
520 _ _ |a Voltage-gated hydrogen channel 1 (Hvcn1) is a voltage-gated proton channel, which reduces cytosol acidification and facilitates the production of ROS. The increased expression of this channel in some cancers has led to proposing Hvcn1 antagonists as potential therapeutics. While its role in most leukocytes has been studied in depth, the function of Hvcn1 in T cells remains poorly defined. We show that Hvcn1 plays a nonredundant role in protecting naive T cells from intracellular acidification during priming. Despite sharing overall functional impairment in vivo and in vitro, Hvcn1-deficient CD4+ and CD8+ T cells display profound differences during the transition from naive to primed T cells, including in the preservation of T cell receptor (TCR) signaling, cellular division, and death. These selective features result, at least in part, from a substantially different metabolic response to intracellular acidification associated with priming. While Hvcn1-deficient naive CD4+ T cells reprogram to rescue the glycolytic pathway, naive CD8+ T cells, which express high levels of this channel in the mitochondria, respond by metabolically compensating mitochondrial dysfunction, at least in part via AMPK activation. These observations imply heterogeneity between adaptation of naive CD4+ and CD8+ T cells to intracellular acidification during activation.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Adaptive immunity
|2 Other
650 _ 7 |a Immunology
|2 Other
650 _ 7 |a Protons
|2 NLM Chemicals
650 _ 7 |a Hydrogen
|0 7YNJ3PO35Z
|2 NLM Chemicals
650 _ 2 |a Hydrogen
|2 MeSH
650 _ 2 |a Hydrogen-Ion Concentration
|2 MeSH
650 _ 2 |a Lymphocyte Count
|2 MeSH
650 _ 2 |a Protons
|2 MeSH
650 _ 2 |a Signal Transduction
|2 MeSH
700 1 _ |a Poobalasingam, Thanushiyan
|b 1
700 1 _ |a Fu, Hongmei
|b 2
700 1 _ |a Bonacina, Fabrizia
|b 3
700 1 _ |a Wang, Guosu
|b 4
700 1 _ |a Morales, Valle
|b 5
700 1 _ |a Moregola, Annalisa
|b 6
700 1 _ |a Mitro, Nico
|b 7
700 1 _ |a Cheung, Kenneth Cp
|b 8
700 1 _ |a Ward, Eleanor J
|b 9
700 1 _ |a Nadkarni, Suchita
|b 10
700 1 _ |a Aksentijevic, Dunja
|b 11
700 1 _ |a Bianchi, Katiuscia
|b 12
700 1 _ |a Norata, Giuseppe Danilo
|b 13
700 1 _ |a Capasso, Melania
|0 P:(DE-2719)2811780
|b 14
700 1 _ |a Federica, Marelli-Berg
|0 P:(DE-2719)9002313
|b 15
|e Last author
|u dzne
773 _ _ |a 10.1172/jci.insight.147814
|g Vol. 7, no. 10, p. e147814
|0 PERI:(DE-600)2874757-4
|n 10
|p e147814
|t JCI insight
|v 7
|y 2022
|x 2379-3708
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/164565/files/DZNE-2022-01114.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/164565/files/DZNE_164565.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:164565
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 14
|6 P:(DE-2719)2811780
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 15
|6 P:(DE-2719)9002313
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-22
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b JCI INSIGHT : 2021
|d 2023-03-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-03-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-03-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-05-18T13:47:27Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-05-18T13:47:27Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-05-18T13:47:27Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-03-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-03-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-03-31
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b JCI INSIGHT : 2021
|d 2023-03-31
920 1 _ |0 I:(DE-2719)1013033
|k AG Capasso
|l Immune Regulation
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013033
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21