001     164649
005     20240313115346.0
024 7 _ |a pmc:PMC9110324
|2 pmc
024 7 _ |a 10.1016/j.xcrm.2022.100652
|2 doi
024 7 _ |a altmetric:128655465
|2 altmetric
024 7 _ |a pmid:35675822
|2 pmid
037 _ _ |a DZNE-2022-01179
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Frishberg, Amit
|0 P:(DE-2719)9001365
|b 0
|e First author
|u dzne
245 _ _ |a Mature neutrophils and a NF-κB-to-IFN transition determine the unifying disease recovery dynamics in COVID-19
260 _ _ |a Maryland Heights, MO
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1670255135_17041
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a (CC BY-NC-ND)
520 _ _ |a Disease recovery dynamics are often difficult to assess, as patients display heterogeneous recovery courses. To model recovery dynamics, exemplified by severe COVID-19, we apply a computational scheme on longitudinally sampled blood transcriptomes, generating recovery states, which we then link to cellular and molecular mechanisms, presenting a framework for studying the kinetics of recovery compared with non-recovery over time and long-term effects of the disease. Specifically, a decrease in mature neutrophils is the strongest cellular effect during recovery, with direct implications on disease outcome. Furthermore, we present strong indications for global regulatory changes in gene programs, decoupled from cell compositional changes, including an early rise in T cell activation and differentiation, resulting in immune rebalancing between interferon and NF-κB activity and restoration of cell homeostasis. Overall, we present a clinically relevant computational framework for modeling disease recovery, paving the way for future studies of the recovery dynamics in other diseases and tissues.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: pub.dzne.de
650 _ 7 |a COVID-19
|2 Other
650 _ 7 |a cell deconvolution
|2 Other
650 _ 7 |a disease modeling
|2 Other
650 _ 7 |a disease recovery
|2 Other
650 _ 7 |a gene regulation
|2 Other
650 _ 7 |a immunology
|2 Other
650 _ 7 |a medicine
|2 Other
650 _ 7 |a systems biology
|2 Other
650 _ 7 |a viral infection
|2 Other
650 _ 7 |a NF-kappa B
|2 NLM Chemicals
650 _ 7 |a Interferons
|0 9008-11-1
|2 NLM Chemicals
650 _ 2 |a COVID-19
|2 MeSH
650 _ 2 |a Cell Differentiation
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Interferons: metabolism
|2 MeSH
650 _ 2 |a NF-kappa B: genetics
|2 MeSH
650 _ 2 |a Neutrophils: metabolism
|2 MeSH
650 _ 2 |a Signal Transduction
|2 MeSH
700 1 _ |a Kooistra, Emma
|b 1
700 1 _ |a Nuesch-Germano, Melanie
|0 0000-0002-9873-8737
|b 2
700 1 _ |a Pecht, Tal
|b 3
700 1 _ |a Milman, Neta
|b 4
700 1 _ |a Reusch, Nico
|0 P:(DE-2719)9000843
|b 5
|u dzne
700 1 _ |a Warnat-Herresthal, Stefanie
|0 P:(DE-2719)9001511
|b 6
|u dzne
700 1 _ |a Bruse, Niklas
|b 7
700 1 _ |a Händler, Kristian
|0 P:(DE-2719)2812735
|b 8
|u dzne
700 1 _ |a Theis, Heidi
|0 P:(DE-2719)2812165
|b 9
|u dzne
700 1 _ |a Kraut, Michael
|0 P:(DE-2719)9000840
|b 10
|u dzne
700 1 _ |a van Rijssen, Esther
|b 11
700 1 _ |a van Cranenbroek, Bram
|0 0000-0001-5135-1183
|b 12
700 1 _ |a Koenen, Hans JPM.
|b 13
700 1 _ |a Heesakkers, Hidde
|b 14
700 1 _ |a van den Boogaard, Mark
|b 15
700 1 _ |a Zegers, Marieke
|b 16
700 1 _ |a Pickkers, Peter
|b 17
700 1 _ |a Becker, Matthias Kai Holger
|0 P:(DE-2719)2812750
|b 18
|u dzne
700 1 _ |a Aschenbrenner, Anna Christin
|0 P:(DE-2719)2812913
|b 19
|u dzne
700 1 _ |a Ulas, Thomas
|0 P:(DE-2719)9000845
|b 20
|u dzne
700 1 _ |a Theis, Fabian J.
|0 0000-0002-2419-1943
|b 21
700 1 _ |a Shen-Orr, Shai S.
|b 22
700 1 _ |a Schultze, Joachim
|0 P:(DE-2719)2811660
|b 23
|u dzne
700 1 _ |a Kox, Matthijs
|b 24
773 _ _ |a 10.1016/j.xcrm.2022.100652
|g p. 100652 -
|0 PERI:(DE-600)3019420-9
|n 6
|p 100652
|t Cell reports
|v 3
|y 2022
|x 2666-3791
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/164649/files/DZNE-2022-01179.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/164649/files/DZNE-2022-01179.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:164649
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9001365
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-2719)9000843
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)9001511
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2812735
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2812165
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)9000840
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 18
|6 P:(DE-2719)2812750
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 19
|6 P:(DE-2719)2812913
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 20
|6 P:(DE-2719)9000845
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 23
|6 P:(DE-2719)2811660
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-22
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b CELL REP MED : 2021
|d 2022-11-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL REP MED : 2021
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-12T12:42:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-12T12:42:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-02-12T12:42:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-22
920 1 _ |0 I:(DE-2719)1013031
|k AG Schultze
|l United epigenomic platform
|x 0
920 1 _ |0 I:(DE-2719)5000031
|k R&D PRECISE
|l Platform for Single Cell Genomics and Epigenomics at DZNE & University of Bonn
|x 1
920 1 _ |0 I:(DE-2719)5000079
|k Modular High Performance Computing
|l Modular High Performance Computing and Artificial Intelligence
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013031
980 _ _ |a I:(DE-2719)5000031
980 _ _ |a I:(DE-2719)5000079
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21