Home > Publications Database > Mature neutrophils and a NF-κB-to-IFN transition determine the unifying disease recovery dynamics in COVID-19 > print |
001 | 164649 | ||
005 | 20240313115346.0 | ||
024 | 7 | _ | |a pmc:PMC9110324 |2 pmc |
024 | 7 | _ | |a 10.1016/j.xcrm.2022.100652 |2 doi |
024 | 7 | _ | |a altmetric:128655465 |2 altmetric |
024 | 7 | _ | |a pmid:35675822 |2 pmid |
037 | _ | _ | |a DZNE-2022-01179 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Frishberg, Amit |0 P:(DE-2719)9001365 |b 0 |e First author |u dzne |
245 | _ | _ | |a Mature neutrophils and a NF-κB-to-IFN transition determine the unifying disease recovery dynamics in COVID-19 |
260 | _ | _ | |a Maryland Heights, MO |c 2022 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1670255135_17041 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a (CC BY-NC-ND) |
520 | _ | _ | |a Disease recovery dynamics are often difficult to assess, as patients display heterogeneous recovery courses. To model recovery dynamics, exemplified by severe COVID-19, we apply a computational scheme on longitudinally sampled blood transcriptomes, generating recovery states, which we then link to cellular and molecular mechanisms, presenting a framework for studying the kinetics of recovery compared with non-recovery over time and long-term effects of the disease. Specifically, a decrease in mature neutrophils is the strongest cellular effect during recovery, with direct implications on disease outcome. Furthermore, we present strong indications for global regulatory changes in gene programs, decoupled from cell compositional changes, including an early rise in T cell activation and differentiation, resulting in immune rebalancing between interferon and NF-κB activity and restoration of cell homeostasis. Overall, we present a clinically relevant computational framework for modeling disease recovery, paving the way for future studies of the recovery dynamics in other diseases and tissues. |
536 | _ | _ | |a 354 - Disease Prevention and Healthy Aging (POF4-354) |0 G:(DE-HGF)POF4-354 |c POF4-354 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: pub.dzne.de |
650 | _ | 7 | |a COVID-19 |2 Other |
650 | _ | 7 | |a cell deconvolution |2 Other |
650 | _ | 7 | |a disease modeling |2 Other |
650 | _ | 7 | |a disease recovery |2 Other |
650 | _ | 7 | |a gene regulation |2 Other |
650 | _ | 7 | |a immunology |2 Other |
650 | _ | 7 | |a medicine |2 Other |
650 | _ | 7 | |a systems biology |2 Other |
650 | _ | 7 | |a viral infection |2 Other |
650 | _ | 7 | |a NF-kappa B |2 NLM Chemicals |
650 | _ | 7 | |a Interferons |0 9008-11-1 |2 NLM Chemicals |
650 | _ | 2 | |a COVID-19 |2 MeSH |
650 | _ | 2 | |a Cell Differentiation |2 MeSH |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Interferons: metabolism |2 MeSH |
650 | _ | 2 | |a NF-kappa B: genetics |2 MeSH |
650 | _ | 2 | |a Neutrophils: metabolism |2 MeSH |
650 | _ | 2 | |a Signal Transduction |2 MeSH |
700 | 1 | _ | |a Kooistra, Emma |b 1 |
700 | 1 | _ | |a Nuesch-Germano, Melanie |0 0000-0002-9873-8737 |b 2 |
700 | 1 | _ | |a Pecht, Tal |b 3 |
700 | 1 | _ | |a Milman, Neta |b 4 |
700 | 1 | _ | |a Reusch, Nico |0 P:(DE-2719)9000843 |b 5 |u dzne |
700 | 1 | _ | |a Warnat-Herresthal, Stefanie |0 P:(DE-2719)9001511 |b 6 |u dzne |
700 | 1 | _ | |a Bruse, Niklas |b 7 |
700 | 1 | _ | |a Händler, Kristian |0 P:(DE-2719)2812735 |b 8 |u dzne |
700 | 1 | _ | |a Theis, Heidi |0 P:(DE-2719)2812165 |b 9 |u dzne |
700 | 1 | _ | |a Kraut, Michael |0 P:(DE-2719)9000840 |b 10 |u dzne |
700 | 1 | _ | |a van Rijssen, Esther |b 11 |
700 | 1 | _ | |a van Cranenbroek, Bram |0 0000-0001-5135-1183 |b 12 |
700 | 1 | _ | |a Koenen, Hans JPM. |b 13 |
700 | 1 | _ | |a Heesakkers, Hidde |b 14 |
700 | 1 | _ | |a van den Boogaard, Mark |b 15 |
700 | 1 | _ | |a Zegers, Marieke |b 16 |
700 | 1 | _ | |a Pickkers, Peter |b 17 |
700 | 1 | _ | |a Becker, Matthias Kai Holger |0 P:(DE-2719)2812750 |b 18 |u dzne |
700 | 1 | _ | |a Aschenbrenner, Anna Christin |0 P:(DE-2719)2812913 |b 19 |u dzne |
700 | 1 | _ | |a Ulas, Thomas |0 P:(DE-2719)9000845 |b 20 |u dzne |
700 | 1 | _ | |a Theis, Fabian J. |0 0000-0002-2419-1943 |b 21 |
700 | 1 | _ | |a Shen-Orr, Shai S. |b 22 |
700 | 1 | _ | |a Schultze, Joachim |0 P:(DE-2719)2811660 |b 23 |u dzne |
700 | 1 | _ | |a Kox, Matthijs |b 24 |
773 | _ | _ | |a 10.1016/j.xcrm.2022.100652 |g p. 100652 - |0 PERI:(DE-600)3019420-9 |n 6 |p 100652 |t Cell reports |v 3 |y 2022 |x 2666-3791 |
856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/164649/files/DZNE-2022-01179.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/164649/files/DZNE-2022-01179.pdf?subformat=pdfa |
909 | C | O | |o oai:pub.dzne.de:164649 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 0 |6 P:(DE-2719)9001365 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-2719)9000843 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 6 |6 P:(DE-2719)9001511 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 8 |6 P:(DE-2719)2812735 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 9 |6 P:(DE-2719)2812165 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 10 |6 P:(DE-2719)9000840 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 18 |6 P:(DE-2719)2812750 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 19 |6 P:(DE-2719)2812913 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 20 |6 P:(DE-2719)9000845 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 23 |6 P:(DE-2719)2811660 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-354 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Prevention and Healthy Aging |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-22 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b CELL REP MED : 2021 |d 2022-11-22 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CELL REP MED : 2021 |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-02-12T12:42:40Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-02-12T12:42:40Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-22 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-02-12T12:42:40Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-22 |
920 | 1 | _ | |0 I:(DE-2719)1013031 |k AG Schultze |l United epigenomic platform |x 0 |
920 | 1 | _ | |0 I:(DE-2719)5000031 |k R&D PRECISE |l Platform for Single Cell Genomics and Epigenomics at DZNE & University of Bonn |x 1 |
920 | 1 | _ | |0 I:(DE-2719)5000079 |k Modular High Performance Computing |l Modular High Performance Computing and Artificial Intelligence |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-2719)1013031 |
980 | _ | _ | |a I:(DE-2719)5000031 |
980 | _ | _ | |a I:(DE-2719)5000079 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|