000164668 001__ 164668
000164668 005__ 20230915090556.0
000164668 0247_ $$2pmc$$apmc:PMC9179901
000164668 0247_ $$2doi$$a10.3390/cells11111761
000164668 0247_ $$2altmetric$$aaltmetric:128942974
000164668 0247_ $$2pmid$$apmid:35681456
000164668 037__ $$aDZNE-2022-01198
000164668 082__ $$a570
000164668 1001_ $$00000-0001-6793-9547$$aMestres, Ivan$$b0
000164668 245__ $$aA Nuclear Belt Fastens on Neural Cell Fate
000164668 260__ $$aBasel$$bMDPI$$c2022
000164668 3367_ $$2DRIVER$$aarticle
000164668 3367_ $$2DataCite$$aOutput Types/Journal article
000164668 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1655287149_27751
000164668 3367_ $$2BibTeX$$aARTICLE
000164668 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000164668 3367_ $$00$$2EndNote$$aJournal Article
000164668 500__ $$a(CC BY)
000164668 520__ $$aSuccessful embryonic and adult neurogenesis require proliferating neural stem and progenitor cells that are intrinsically and extrinsically guided into a neuronal fate. In turn, migration of new-born neurons underlies the complex cytoarchitecture of the brain. Proliferation and migration are therefore essential for brain development, homeostasis and function in adulthood. Among several tightly regulated processes involved in brain formation and function, recent evidence points to the nuclear envelope (NE) and NE-associated components as critical new contributors. Classically, the NE was thought to merely represent a barrier mediating selective exchange between the cytoplasm and nucleoplasm. However, research over the past two decades has highlighted more sophisticated and diverse roles for NE components in progenitor fate choice and migration of their progeny by tuning gene expression via interactions with chromatin, transcription factors and epigenetic factors. Defects in NE components lead to neurodevelopmental impairments, whereas age-related changes in NE components are proposed to influence neurodegenerative diseases. Thus, understanding the roles of NE components in brain development, maintenance and aging is likely to reveal new pathophysiological mechanisms for intervention. Here, we review recent findings for the previously underrepresented contribution of the NE in neuronal commitment and migration, and envision future avenues for investigation. View Full-Text
000164668 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000164668 588__ $$aDataset connected to CrossRef, Journals: pub.dzne.de
000164668 650_2 $$2MeSH$$aCell Differentiation: physiology
000164668 650_2 $$2MeSH$$aCell Nucleus
000164668 650_2 $$2MeSH$$aNeurogenesis: genetics
000164668 650_2 $$2MeSH$$aNeurons: metabolism
000164668 650_2 $$2MeSH$$aNuclear Envelope: metabolism
000164668 7001_ $$0P:(DE-2719)9000586$$aHoutman, Judith$$b1$$udzne
000164668 7001_ $$aCalegari, Federico$$b2
000164668 7001_ $$0P:(DE-2719)2814117$$aToda, Tomohisa$$b3$$eLast author$$udzne
000164668 770__ $$aConcepts and Controversies in Adult Neurogenesis and Adult Neural Stem Cells
000164668 773__ $$0PERI:(DE-600)2661518-6$$a10.3390/cells11111761$$gVol. 11, no. 11, p. 1761 -$$n11$$p1761$$tCells$$v11$$x2073-4409$$y2022
000164668 8564_ $$uhttps://pub.dzne.de/record/164668/files/DZNE-2022-01198.pdf$$yOpenAccess
000164668 8564_ $$uhttps://pub.dzne.de/record/164668/files/DZNE-2022-01198.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000164668 909CO $$ooai:pub.dzne.de:164668$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000164668 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000586$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000164668 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2814117$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000164668 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000164668 9141_ $$y2022
000164668 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-05-04
000164668 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000164668 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000164668 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000164668 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000164668 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000164668 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000164668 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELLS-BASEL : 2021$$d2022-11-30
000164668 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-30
000164668 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-30
000164668 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-01-07T08:42:17Z
000164668 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-01-07T08:42:17Z
000164668 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-01-07T08:42:17Z
000164668 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-30
000164668 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-30
000164668 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-30
000164668 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-30
000164668 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-30
000164668 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELLS-BASEL : 2021$$d2022-11-30
000164668 9201_ $$0I:(DE-2719)1710014$$kAG Toda$$lNuclear architecture in neural plasticity and aging$$x0
000164668 980__ $$ajournal
000164668 980__ $$aVDB
000164668 980__ $$aUNRESTRICTED
000164668 980__ $$aI:(DE-2719)1710014
000164668 9801_ $$aFullTexts