000164948 001__ 164948
000164948 005__ 20240611120547.0
000164948 0247_ $$2doi$$a10.3389/fncel.2022.861202
000164948 0247_ $$2pmid$$apmid:35875350
000164948 0247_ $$2pmc$$apmc:PMC9296810
000164948 0247_ $$2altmetric$$aaltmetric:132812281
000164948 037__ $$aDZNE-2022-01352
000164948 041__ $$aEnglish
000164948 082__ $$a610
000164948 1001_ $$aPollmanns, Maike R$$b0
000164948 245__ $$aActivated Endolysosomal Cation Channel TRPML1 Facilitates Maturation of α-Synuclein-Containing Autophagosomes.
000164948 260__ $$aLausanne$$bFrontiers Research Foundation$$c2022
000164948 3367_ $$2DRIVER$$aarticle
000164948 3367_ $$2DataCite$$aOutput Types/Journal article
000164948 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1718027529_5324
000164948 3367_ $$2BibTeX$$aARTICLE
000164948 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000164948 3367_ $$00$$2EndNote$$aJournal Article
000164948 520__ $$aBackground: Protein aggregates are degraded via the autophagy-lysosome pathway and alterations in the lysosomal system leading to the accumulation of pathogenic proteins, including aggregates of α-synuclein in Parkinson's disease (PD). The importance of the endolysosomal transient receptor potential cation channel, mucolipin subfamily 1 (TRPML1) for the lysosomal function is highlighted by the fact that TRPML1 mutations cause the lysosomal storage disease mucolipidosis type IV. In this study, we investigated the mechanism by which activation of TRPML1 affects the degradation of α-synuclein. Methods: As a model of α-synuclein pathology, we expressed the pathogenic A53Tα-synuclein mutant in HEK293T cells. These cells were treated with the synthetic TRPML1 agonist ML-SA1. The amount of α-synuclein protein was determined by immunoblots. The abundance of aggregates and autolysosomal vesicles was determined by fluorescence microscopy and immunocytochemistry. Findings were confirmed by life-cell imaging and by application of ML-SA1 and the TRPML1 antagonist ML-SI3 to human dopaminergic neurons and human stem cell-derived neurons. Results: ML-SA1 reduced the percentage of HEK293T cells with α-synuclein aggregates and the amount of α-synuclein protein. The effect of ML-SA1 was blocked by pharmacological and genetic inhibition of autophagy. Consistent with TRPML function, it required the membrane lipid PI(3,5)P2, and cytosolic calcium. ML-SA1 shifted the composition of autophagosomes towards a higher fraction of mature autolysosomes, also in presence of α-synuclein. In neurons, inhibition of TRPML1 by its antagonist ML-SI3 blocked autophagosomal clearance, whereas the agonist ML-SA1 shifted the composition of a-synuclein particles towards a higher fraction of acidified particles. ML-SA1 was able to override the effect of Bafilomycin A1, which blocks the fusion of the autophagosome and lysosome and its acidification. Conclusion: These findings suggest, that activating TRPML1 with ML-SA1 facilitates clearance of α-synuclein aggregates primarily by affecting the late steps of the autophagy, i.e., by promoting autophagosome maturation. In agreement with recent work by others, our findings indicate that TRPML1 might constitute a plausible therapeutic target for PD, that warrants further validation in rodent models of α-synuclein pathology.
000164948 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000164948 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x1
000164948 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000164948 650_7 $$2Other$$aML-SA1
000164948 650_7 $$2Other$$aParkinson’s disease
000164948 650_7 $$2Other$$aTRPML1
000164948 650_7 $$2Other$$aacidification
000164948 650_7 $$2Other$$aautolysosome maturation
000164948 650_7 $$2Other$$aautophagy
000164948 650_7 $$2Other$$amucolipin-1
000164948 650_7 $$2Other$$asynuclein
000164948 7001_ $$0P:(DE-2719)2812871$$aBeer, Judith$$b1$$udzne
000164948 7001_ $$0P:(DE-2719)9000727$$aRosignol, Ines$$b2$$udzne
000164948 7001_ $$0P:(DE-2719)9000726$$aRodriguez-Muela, Natalia$$b3$$udzne
000164948 7001_ $$0P:(DE-2719)2814178$$aFalkenburger, Björn H$$b4$$udzne
000164948 7001_ $$0P:(DE-2719)9001016$$aDinter, Elisabeth$$b5$$eLast author$$udzne
000164948 773__ $$0PERI:(DE-600)2452963-1$$a10.3389/fncel.2022.861202$$gVol. 16, p. 861202$$p861202$$tFrontiers in cellular neuroscience$$v16$$x1662-5102$$y2022
000164948 8564_ $$uhttps://pub.dzne.de/record/164948/files/DZNE-2022-01352.pdf$$yOpenAccess
000164948 8564_ $$uhttps://pub.dzne.de/record/164948/files/DZNE-2022-01352.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000164948 909CO $$ooai:pub.dzne.de:164948$$pdnbdelivery$$pdriver$$popen_access$$pVDB$$popenaire
000164948 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)2812871$$aExternal Institute$$b1$$kExtern
000164948 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000727$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000164948 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000726$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000164948 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2814178$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000164948 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001016$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000164948 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000164948 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x1
000164948 9141_ $$y2022
000164948 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000164948 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-05-04
000164948 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-25
000164948 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000164948 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000164948 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-25
000164948 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT CELL NEUROSCI : 2021$$d2022-11-25
000164948 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-13T10:30:24Z
000164948 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000164948 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-13T10:30:24Z
000164948 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000164948 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000164948 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000164948 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-13T10:30:24Z
000164948 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000164948 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFRONT CELL NEUROSCI : 2021$$d2022-11-25
000164948 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000164948 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000164948 9201_ $$0I:(DE-2719)1710012$$kAG Falkenburger$$lTranslational Parkinson Research$$x0
000164948 9201_ $$0I:(DE-2719)1713001$$kAG Rodriguez-Muela$$lSelective Neuronal Vulnerability in Neurodegenerative Diseases$$x1
000164948 980__ $$ajournal
000164948 980__ $$aVDB
000164948 980__ $$aI:(DE-2719)1710012
000164948 980__ $$aI:(DE-2719)1713001
000164948 980__ $$aUNRESTRICTED
000164948 9801_ $$aFullTexts