000164983 001__ 164983
000164983 005__ 20230915090603.0
000164983 0247_ $$2doi$$a10.1212/WNL.0000000000200951
000164983 0247_ $$2pmid$$apmid:35853750
000164983 0247_ $$2ISSN$$a0028-3878
000164983 0247_ $$2ISSN$$a1526-632X
000164983 0247_ $$2altmetric$$aaltmetric:132842683
000164983 037__ $$aDZNE-2022-01387
000164983 041__ $$aEnglish
000164983 082__ $$a610
000164983 1001_ $$00000-0002-7421-7101$$aDemnitz-King, Harriet$$b0
000164983 245__ $$aAssociation Between Self-Reflection, Cognition, and Brain Health in Cognitively Unimpaired Older Adults.
000164983 260__ $$a[S.l.]$$bOvid$$c2022
000164983 3367_ $$2DRIVER$$aarticle
000164983 3367_ $$2DataCite$$aOutput Types/Journal article
000164983 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1667899154_7090
000164983 3367_ $$2BibTeX$$aARTICLE
000164983 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000164983 3367_ $$00$$2EndNote$$aJournal Article
000164983 520__ $$aSelf-reflection (the active evaluation of ones thoughts, feelings and behaviours) can confer protection against adverse health outcomes. Its impact on markers sensitive to Alzheimer's disease (AD), however, is unknown. The primary objective of this cross-sectional study was to examine the association between self-reflection and AD-sensitive markers.This study utilised baseline data from cognitively unimpaired older adults enrolled in the Age-Well clinical trial and older adults with subjective cognitive decline from the SCD-Well clinical trial. In both cohorts, self-reflection was measured via the reflective pondering subscale of the Rumination Response Scale, global cognition assessed via the Preclinical Alzheimer's Cognitive Composite 5, and a modified late-life Lifestyle-for-Brain-Health (LIBRA) index computed to assess health and lifestyle factors. In Age-Well, glucose metabolism and amyloid deposition were quantified in AD-sensitive grey matter regions via FDG- and AV45-PET scans, respectively. Associations between self-reflection and AD-sensitive markers (global cognition, glucose metabolism, and amyloid deposition) were assessed via unadjusted and adjusted regressions. Further, we explored whether associations were independent of health and lifestyle factors. To control for multiple comparisons in Age-Well, false discovery rate corrected p-values (p FDR) are reported.A total of 134 (mean age 69.3 ± 3.8 years, 61.9% female) Age-Well and 125 (mean age 72.6 ± 6.9 years, 65.6% female) SCD-Well participants were included. Across unadjusted and adjusted analyses self-reflection was positively associated with global cognition in both cohorts (Age-Well: adjusted-β = 0.22, 95% confidence interval [CI] 0.05-0.40, p FDR = 0.041; SCD-Well: adjusted-β = 0.18, 95% CI 0.03-0.33, p = 0.023) and with glucose metabolism in Age-Well after adjustment for all covariates (adjusted-β = 0.29, 95% CI 0.03-0.55, p FDR = 0.041). Associations remained following additional adjustment for LIBRA but did not survive FDR correction. Self-reflection was not associated with amyloid deposition (adjusted-β = 0.13, 95% CI -0.07-0.34, p FDR = 0.189).Self-reflection was associated with better global cognition in two independent cohorts and with higher glucose metabolism after adjustment for covariates. There was weak evidence that relationships were independent from health and lifestyle behaviours. Longitudinal and experimental studies are warranted to elucidate whether self-reflection helps preserve cognition and glucose metabolism, or whether reduced capacity to self-reflect is a harbinger of cognitive decline and glucose hypometabolism.Age-Well: NCT02977819; SCD-Well: NCT03005652.
000164983 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000164983 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000164983 650_7 $$2NLM Chemicals$$aAmyloid beta-Peptides
000164983 650_7 $$2NLM Chemicals$$aBiomarkers
000164983 650_7 $$0IY9XDZ35W2$$2NLM Chemicals$$aGlucose
000164983 650_2 $$2MeSH$$aAged
000164983 650_2 $$2MeSH$$aAlzheimer Disease: metabolism
000164983 650_2 $$2MeSH$$aAmyloid beta-Peptides: metabolism
000164983 650_2 $$2MeSH$$aBiomarkers: metabolism
000164983 650_2 $$2MeSH$$aBrain: diagnostic imaging
000164983 650_2 $$2MeSH$$aBrain: metabolism
000164983 650_2 $$2MeSH$$aCognition: physiology
000164983 650_2 $$2MeSH$$aCognitive Dysfunction: diagnostic imaging
000164983 650_2 $$2MeSH$$aCognitive Dysfunction: metabolism
000164983 650_2 $$2MeSH$$aCross-Sectional Studies
000164983 650_2 $$2MeSH$$aFemale
000164983 650_2 $$2MeSH$$aGlucose: metabolism
000164983 650_2 $$2MeSH$$aHumans
000164983 650_2 $$2MeSH$$aMagnetic Resonance Imaging
000164983 650_2 $$2MeSH$$aMale
000164983 650_2 $$2MeSH$$aPositron-Emission Tomography
000164983 7001_ $$00000-0003-0566-5581$$aGonneaud, Julie$$b1
000164983 7001_ $$00000-0003-0757-7761$$aKlimecki, Olga M$$b2
000164983 7001_ $$aChocat, Anne$$b3
000164983 7001_ $$00000-0001-9288-9756$$aCollette, Fabienne$$b4
000164983 7001_ $$00000-0001-8848-8300$$aDautricourt, Sophie$$b5
000164983 7001_ $$0P:(DE-2719)2000032$$aJessen, Frank$$b6$$udzne
000164983 7001_ $$00000-0001-7815-7022$$aKrolak-Salmon, Pierre$$b7
000164983 7001_ $$00000-0002-0258-3233$$aLutz, Antoine$$b8
000164983 7001_ $$00000-0001-6367-756X$$aMorse, Rachel M$$b9
000164983 7001_ $$aMolinuevo, José Luis$$b10
000164983 7001_ $$00000-0001-7943-1281$$aPoisnel, Géraldine$$b11
000164983 7001_ $$00000-0001-7906-934X$$aTouron, Edelweiss$$b12
000164983 7001_ $$0P:(DE-2719)2814122$$aWirth, Miranka$$b13$$udzne
000164983 7001_ $$00000-0001-7346-8200$$aWalker, Zuzana$$b14
000164983 7001_ $$00000-0002-4889-7932$$aChételat, Gaël$$b15
000164983 7001_ $$aMarchant, Natalie L$$b16
000164983 7001_ $$aGroup, Medit-Ageing Research$$b17$$eCollaboration Author
000164983 773__ $$0PERI:(DE-600)1491874-2$$a10.1212/WNL.0000000000200951$$gp. 10.1212/WNL.0000000000200951 -$$n13$$pe1422 - e1431$$tNeurology$$v99$$x0028-3878$$y2022
000164983 909CO $$ooai:pub.dzne.de:164983$$pVDB
000164983 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)2000032$$aExternal Institute$$b6$$kExtern
000164983 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2814122$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b13$$kDZNE
000164983 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000164983 9141_ $$y2022
000164983 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000164983 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000164983 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000164983 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz$$d2022-11-12$$wger
000164983 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000164983 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000164983 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000164983 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-12
000164983 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-12
000164983 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-12
000164983 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROLOGY : 2021$$d2022-11-12
000164983 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000164983 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNEUROLOGY : 2021$$d2022-11-12
000164983 9201_ $$0I:(DE-2719)1710011$$kAG Wirth$$lBrain aging: Biomarkers, lifestyle factors and prevention of dementia$$x0
000164983 9201_ $$0I:(DE-2719)1710008$$kAG Donix$$lClinical planning and intersite group$$x1
000164983 980__ $$ajournal
000164983 980__ $$aVDB
000164983 980__ $$aI:(DE-2719)1710011
000164983 980__ $$aI:(DE-2719)1710008
000164983 980__ $$aUNRESTRICTED