000165146 001__ 165146
000165146 005__ 20230915090607.0
000165146 0247_ $$2pmc$$apmc:PMC9482346
000165146 0247_ $$2doi$$a10.1242/jcs.260227
000165146 0247_ $$2pmid$$apmid:35950506
000165146 0247_ $$2ISSN$$a0021-9533
000165146 0247_ $$2ISSN$$a0370-2952
000165146 0247_ $$2ISSN$$a1477-9137
000165146 037__ $$aDZNE-2022-01451
000165146 041__ $$aEnglish
000165146 082__ $$a570
000165146 1001_ $$00000-0002-9045-1280$$aPark, Jae-Sook$$b0
000165146 245__ $$aInteraction between VPS13A and the XK scramblase is important for VPS13A function in humans.
000165146 260__ $$aCambridge$$bCompany of Biologists Limited$$c2022
000165146 3367_ $$2DRIVER$$aarticle
000165146 3367_ $$2DataCite$$aOutput Types/Journal article
000165146 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1663333634_24001
000165146 3367_ $$2BibTeX$$aARTICLE
000165146 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000165146 3367_ $$00$$2EndNote$$aJournal Article
000165146 520__ $$aVPS13 family proteins form conduits between the membranes of different organelles through which lipids are transferred. In humans, there are four VPS13 paralogs, and mutations in the genes encoding each of them are associated with different inherited disorders. VPS13 proteins contain multiple conserved domains. The Vps13 adaptor-binding (VAB) domain binds to adaptor proteins that recruit VPS13 to specific membrane contact sites. This work demonstrates the importance of a different domain in VPS13A function. The pleckstrin homology (PH) domain at the C-terminal region of VPS13A is required to form a complex with the XK scramblase and for the co-localization of VPS13A with XK within the cell. Alphafold modeling was used to predict an interaction surface between VPS13A and XK. Mutations in this region disrupt both complex formation and co-localization of the two proteins. Mutant VPS13A alleles found in patients with VPS13A disease truncate the PH domain. The phenotypic similarities between VPS13A disease and McLeod syndrome caused by mutations in VPS13A and XK, respectively, argue that loss of the VPS13A-XK complex is the basis of both diseases.
000165146 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000165146 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000165146 650_7 $$2Other$$aLipid transport
000165146 650_7 $$2Other$$aNeuro-acanthocytosis syndromes
000165146 650_7 $$2Other$$aNeurodegeneration
000165146 650_7 $$2Other$$aPH domain
000165146 650_7 $$2Other$$aVPS13A
000165146 650_7 $$2Other$$aXK
000165146 650_7 $$2NLM Chemicals$$aVPS13A protein, human
000165146 650_7 $$2NLM Chemicals$$aVesicular Transport Proteins
000165146 650_2 $$2MeSH$$aHumans
000165146 650_2 $$2MeSH$$aMitochondrial Membranes: metabolism
000165146 650_2 $$2MeSH$$aMutation: genetics
000165146 650_2 $$2MeSH$$aNeuroacanthocytosis: complications
000165146 650_2 $$2MeSH$$aNeuroacanthocytosis: genetics
000165146 650_2 $$2MeSH$$aNeuroacanthocytosis: metabolism
000165146 650_2 $$2MeSH$$aVesicular Transport Proteins: genetics
000165146 650_2 $$2MeSH$$aVesicular Transport Proteins: metabolism
000165146 7001_ $$0P:(DE-2719)9000587$$aHu, Yiying$$b1$$udzne
000165146 7001_ $$aHollingsworth, Nancy M$$b2
000165146 7001_ $$aMiltenberger-Miltenyi, Gabriel$$b3
000165146 7001_ $$00000-0002-6600-6996$$aNeiman, Aaron M$$b4
000165146 773__ $$0PERI:(DE-600)1483099-1$$a10.1242/jcs.260227$$gVol. 135, no. 17, p. jcs260227$$n17$$pjcs260227$$tJournal of cell science$$v135$$x0021-9533$$y2022
000165146 909CO $$ooai:pub.dzne.de:165146$$pVDB
000165146 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000587$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000165146 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000165146 9141_ $$y2022
000165146 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000165146 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-31
000165146 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000165146 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CELL SCI : 2021$$d2022-11-11
000165146 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000165146 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000165146 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11
000165146 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11
000165146 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000165146 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000165146 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-11
000165146 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-11
000165146 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CELL SCI : 2021$$d2022-11-11
000165146 9201_ $$0I:(DE-2719)1140002$$kZebrafish Models ; AG Schmid München$$lZebrafish Models$$x0
000165146 980__ $$ajournal
000165146 980__ $$aVDB
000165146 980__ $$aI:(DE-2719)1140002
000165146 980__ $$aUNRESTRICTED