001     165167
005     20230915090608.0
024 7 _ |a pmc:PMC9750733
|2 pmc
024 7 _ |a 10.1016/j.neuroimage.2022.119511
|2 doi
024 7 _ |a pmid:35914670
|2 pmid
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a altmetric:133558388
|2 altmetric
037 _ _ |a DZNE-2022-01469
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Strain, Jeremy F
|b 0
245 _ _ |a Covariance-based vs. correlation-based functional connectivity dissociates healthy aging from Alzheimer disease.
260 _ _ |a Orlando, Fla.
|c 2022
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1664540746_12113
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Prior studies of aging and Alzheimer disease have evaluated resting state functional connectivity (FC) using either seed-based correlation (SBC) or independent component analysis (ICA), with a focus on particular functional systems. SBC and ICA both are insensitive to differences in signal amplitude. At the same time, accumulating evidence indicates that the amplitude of spontaneous BOLD signal fluctuations is physiologically meaningful. We systematically compared covariance-based FC, which is sensitive to amplitude, vs. correlation-based FC, which is not, in affected individuals and controls drawn from two cohorts of participants including autosomal dominant Alzheimer disease (ADAD), late onset Alzheimer disease (LOAD), and age-matched controls. Functional connectivity was computed over 222 regions of interest and group differences were evaluated in terms of components projected onto a space of lower dimension. Our principal observations are: (1) Aging is associated with global loss of resting state fMRI signal amplitude that is approximately uniform across resting state networks. (2) Thus, covariance FC measures decrease with age whereas correlation FC is relatively preserved in healthy aging. (3) In contrast, symptomatic ADAD and LOAD both lead to loss of spontaneous activity amplitude as well as severely degraded correlation structure. These results demonstrate a double dissociation between age vs. Alzheimer disease and the amplitude vs. correlation structure of resting state BOLD signals. Modeling results suggest that the AD-associated loss of correlation structure is attributable to a relative increase in the fraction of locally restricted as opposed to widely shared variance.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Aging
|2 Other
650 _ 7 |a Autosomal dominant Alzheimer disease
|2 Other
650 _ 7 |a Covariance
|2 Other
650 _ 7 |a Late onset Alzheimer disease
|2 Other
650 _ 7 |a Resting-state functional connectivity
|2 Other
650 _ 2 |a Aging
|2 MeSH
650 _ 2 |a Alzheimer Disease: diagnostic imaging
|2 MeSH
650 _ 2 |a Brain: physiology
|2 MeSH
650 _ 2 |a Healthy Aging
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: methods
|2 MeSH
700 1 _ |a Brier, Matthew R
|b 1
700 1 _ |a Tanenbaum, Aaron
|b 2
700 1 _ |a Gordon, Brian A
|b 3
700 1 _ |a McCarthy, John E
|b 4
700 1 _ |a Dincer, Aylin
|b 5
700 1 _ |a Marcus, Daniel S
|b 6
700 1 _ |a Chhatwal, Jasmeer P
|b 7
700 1 _ |a Graff-Radford, Neill R
|b 8
700 1 _ |a Day, Gregory S
|b 9
700 1 _ |a la Fougère, Christian
|0 P:(DE-2719)9000177
|b 10
|u dzne
700 1 _ |a Perrin, Richard J
|b 11
700 1 _ |a Salloway, Stephen
|b 12
700 1 _ |a Schofield, Peter R
|b 13
700 1 _ |a Yakushev, Igor
|0 P:(DE-2719)9000355
|b 14
|u dzne
700 1 _ |a Ikeuchi, Takeshi
|b 15
700 1 _ |a Vöglein, Jonathan
|0 P:(DE-2719)2811820
|b 16
|u dzne
700 1 _ |a Morris, John C
|b 17
700 1 _ |a Benzinger, Tammie L S
|b 18
700 1 _ |a Bateman, Randall J
|b 19
700 1 _ |a Ances, Beau M
|b 20
700 1 _ |a Snyder, Abraham Z
|b 21
700 1 _ |a Network, Dominantly Inherited Alzheimer
|b 22
|e Collaboration Author
773 _ _ |a 10.1016/j.neuroimage.2022.119511
|g Vol. 261, p. 119511 -
|0 PERI:(DE-600)1471418-8
|p 119511
|t NeuroImage
|v 261
|y 2022
|x 1053-8119
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/165167/files/DZNE-2022-01469.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/165167/files/DZNE-2022-01469.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:165167
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)9000177
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 P:(DE-2719)9000355
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 16
|6 P:(DE-2719)2811820
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-29
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)
|0 LIC:(DE-HGF)CCBYNCNDNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-01-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-27T20:29:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-27T20:29:23Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-09-27T20:29:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2021
|d 2022-11-12
920 1 _ |0 I:(DE-2719)6000018
|k Tübingen common
|l Tübingen common
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)6000018
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21