001     165244
005     20240119135229.0
024 7 _ |a pmc:PMC10031774
|2 pmc
024 7 _ |a 10.1016/j.clinph.2022.08.018
|2 doi
024 7 _ |a pmid:36115809
|2 pmid
024 7 _ |a 0921-884X
|2 ISSN
024 7 _ |a 1388-2457
|2 ISSN
024 7 _ |a 1872-8952
|2 ISSN
024 7 _ |a altmetric:135737314
|2 altmetric
037 _ _ |a DZNE-2022-01537
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Brunoni, Andre R
|b 0
245 _ _ |a Digitalized transcranial electrical stimulation: A consensus statement.
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1705668707_6327
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Although relatively costly and non-scalable, non-invasive neuromodulation interventions are treatment alternatives for neuropsychiatric disorders. The recent developments of highly-deployable transcranial electric stimulation (tES) systems, combined with mobile-Health technologies, could be incorporated in digital trials to overcome methodological barriers and increase equity of access. The study aims are to discuss the implementation of tES digital trials by performing a systematic scoping review and strategic process mapping, evaluate methodological aspects of tES digital trial designs, and provide Delphi-based recommendations for implementing digital trials using tES.We convened 61 highly-productive specialists and contacted 8 tES companies to assess 71 issues related to tES digitalization readiness, and processes, barriers, advantages, and opportunities for implementing tES digital trials. Delphi-based recommendations (>60% agreement) were provided.The main strengths/opportunities of tES were: (i) non-pharmacological nature (92% of agreement), safety of these techniques (80%), affordability (88%), and potential scalability (78%). As for weaknesses/threats, we listed insufficient supervision (76%) and unclear regulatory status (69%). Many issues related to methodological biases did not reach consensus. Device appraisal showed moderate digitalization readiness, with high safety and potential for trial implementation, but low connectivity.Panelists recognized the potential of tES for scalability, generalizability, and leverage of digital trials processes; with no consensus about aspects regarding methodological biases.We further propose and discuss a conceptual framework for exploiting shared aspects between mobile-Health tES technologies with digital trials methodology to drive future efforts for digitizing tES trials.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Delphi panel
|2 Other
650 _ 7 |a Digital health
|2 Other
650 _ 7 |a Mobile Health
|2 Other
650 _ 7 |a Non-invasive neuromodulation
|2 Other
650 _ 7 |a Systematic review
|2 Other
650 _ 2 |a Consensus
|2 MeSH
650 _ 2 |a Electric Stimulation
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Telemedicine
|2 MeSH
650 _ 2 |a Transcranial Direct Current Stimulation: methods
|2 MeSH
700 1 _ |a Ekhtiari, Hamed
|b 1
700 1 _ |a Antal, Andrea
|b 2
700 1 _ |a Auvichayapat, Paradee
|b 3
700 1 _ |a Baeken, Chris
|b 4
700 1 _ |a Benseñor, Isabela M
|b 5
700 1 _ |a Bikson, Marom
|b 6
700 1 _ |a Boggio, Paulo
|b 7
700 1 _ |a Borroni, Barbara
|b 8
700 1 _ |a Brighina, Filippo
|b 9
700 1 _ |a Brunelin, Erome
|b 10
700 1 _ |a Carvalho, Sandra
|b 11
700 1 _ |a Caumo, Wolnei
|b 12
700 1 _ |a Ciechanski, Patrick
|b 13
700 1 _ |a Charvet, Leigh
|b 14
700 1 _ |a Clark, Vincent P
|b 15
700 1 _ |a Cohen Kadosh, Roi
|b 16
700 1 _ |a Cotelli, Maria
|b 17
700 1 _ |a Datta, Abhishek
|b 18
700 1 _ |a Deng, Zhi-De
|b 19
700 1 _ |a De Raedt, Rudi
|b 20
700 1 _ |a De Ridder, Dirk
|b 21
700 1 _ |a Fitzgerald, Paul B
|b 22
700 1 _ |a Floel, Agnes
|0 P:(DE-2719)2812683
|b 23
|u dzne
700 1 _ |a Frohlich, Flavio
|b 24
700 1 _ |a George, Mark S
|b 25
700 1 _ |a Ghobadi-Azbari, Peyman
|b 26
700 1 _ |a Goerigk, Stephan
|b 27
700 1 _ |a Hamilton, Roy H
|b 28
700 1 _ |a Jaberzadeh, Shapour J
|b 29
700 1 _ |a Hoy, Kate
|b 30
700 1 _ |a Kidgell, Dawson J
|b 31
700 1 _ |a Zonoozi, Arash Khojasteh
|b 32
700 1 _ |a Kirton, Adam
|b 33
700 1 _ |a Laureys, Steven
|b 34
700 1 _ |a Lavidor, Michal
|b 35
700 1 _ |a Lee, Kiwon
|b 36
700 1 _ |a Leite, Jorge
|b 37
700 1 _ |a Lisanby, Sarah H
|b 38
700 1 _ |a Loo, Colleen
|b 39
700 1 _ |a Martin, Donel M
|b 40
700 1 _ |a Miniussi, Carlo
|b 41
700 1 _ |a Mondino, Marine
|b 42
700 1 _ |a Monte-Silva, Katia
|b 43
700 1 _ |a Morales-Quezada, Leon
|b 44
700 1 _ |a Nitsche, Michael A
|b 45
700 1 _ |a Okano, Alexandre H
|b 46
700 1 _ |a Oliveira, Claudia S
|b 47
700 1 _ |a Onarheim, Balder
|b 48
700 1 _ |a Pacheco-Barrios, Kevin
|b 49
700 1 _ |a Padberg, Frank
|b 50
700 1 _ |a Nakamura-Palacios, Ester M
|b 51
700 1 _ |a Palm, Ulrich
|b 52
700 1 _ |a Paulus, Walter
|b 53
700 1 _ |a Plewnia, Christian
|b 54
700 1 _ |a Priori, Alberto
|b 55
700 1 _ |a Rajji, Tarek K
|b 56
700 1 _ |a Razza, Lais B
|b 57
700 1 _ |a Rehn, Erik M
|b 58
700 1 _ |a Ruffini, Giulio
|b 59
700 1 _ |a Schellhorn, Klaus
|b 60
700 1 _ |a Zare-Bidoky, Mehran
|b 61
700 1 _ |a Simis, Marcel
|b 62
700 1 _ |a Skorupinski, Pawel
|b 63
700 1 _ |a Suen, Paulo
|b 64
700 1 _ |a Thibaut, Aurore
|b 65
700 1 _ |a Valiengo, Leandro C L
|b 66
700 1 _ |a Vanderhasselt, Marie-Anne
|b 67
700 1 _ |a Vanneste, Sven
|b 68
700 1 _ |a Venkatasubramanian, Ganesan
|b 69
700 1 _ |a Violante, Ines R
|b 70
700 1 _ |a Wexler, Anna
|b 71
700 1 _ |a Woods, Adam J
|b 72
700 1 _ |a Fregni, Felipe
|b 73
773 _ _ |a 10.1016/j.clinph.2022.08.018
|g p. S1388245722008719
|0 PERI:(DE-600)1499934-1
|p 154-165
|t Clinical neurophysiology
|v 143
|y 2022
|x 0921-884X
856 4 _ |u https://pub.dzne.de/record/165244/files/DZNE-2022-01537_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/165244/files/DZNE-2022-01537_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:165244
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 23
|6 P:(DE-2719)2812683
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-05
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CLIN NEUROPHYSIOL : 2021
|d 2022-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-05
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-05
920 1 _ |0 I:(DE-2719)1510100
|k AG Teipel
|l Clinical Dementia Research (Rostock /Greifswald)
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1510100
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21