001     165257
005     20230915090613.0
024 7 _ |a 10.1002/ana.26465
|2 doi
024 7 _ |a pmid:36053756
|2 pmid
024 7 _ |a 0364-5134
|2 ISSN
024 7 _ |a 1531-8249
|2 ISSN
024 7 _ |a altmetric:133633555
|2 altmetric
037 _ _ |a DZNE-2022-01550
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Rauchmann, Boris Stephan
|0 P:(DE-2719)9001808
|b 0
|e First author
|u dzne
245 _ _ |a Microglial Activation and Connectivity in Alzheimer Disease and Aging.
260 _ _ |a Hoboken, NJ
|c 2022
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1667900375_7091
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a CC BY-NC: https://creativecommons.org/licenses/by-nc/4.0/
520 _ _ |a Alzheimer disease (AD) is characterized by amyloid β (Aβ) plaques and neurofibrillary tau tangles, but increasing evidence suggests that neuroinflammation also plays a key role, driven by the activation of microglia. Aβ and tau pathology appear to spread along pathways of highly connected brain regions, but it remains elusive whether microglial activation follows a similar distribution pattern. Here, we assess whether connectivity is associated with microglia activation patterns.We included 32 Aβ-positive early AD subjects (18 women, 14 men) and 18 Aβ-negative age-matched healthy controls (10 women, 8 men) from the prospective ActiGliA (Activity of Cerebral Networks, Amyloid and Microglia in Aging and Alzheimer's Disease) study. All participants underwent microglial activation positron emission tomography (PET) with the third-generation mitochondrial 18 kDa translocator protein (TSPO) ligand [18 F]GE-180 and magnetic resonance imaging (MRI) to measure resting-state functional and structural connectivity.We found that inter-regional covariance in TSPO-PET and standardized uptake value ratio was preferentially distributed along functionally highly connected brain regions, with MRI structural connectivity showing a weaker association with microglial activation. AD patients showed increased TSPO-PET tracer uptake bilaterally in the anterior medial temporal lobe compared to controls, and higher TSPO-PET uptake was associated with cognitive impairment and dementia severity in a disease stage-dependent manner.Microglial activation distributes preferentially along highly connected brain regions, similar to tau pathology. These findings support the important role of microglia in neurodegeneration, and we speculate that pathology spreads throughout the brain along vulnerable connectivity pathways. ANN NEUROL 2022.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 1
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 2
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Amyloid beta-Peptides
|2 NLM Chemicals
650 _ 7 |a tau Proteins
|2 NLM Chemicals
650 _ 7 |a Ligands
|2 NLM Chemicals
650 _ 7 |a TSPO protein, human
|2 NLM Chemicals
650 _ 7 |a Receptors, GABA
|2 NLM Chemicals
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Alzheimer Disease: pathology
|2 MeSH
650 _ 2 |a Amyloid beta-Peptides: metabolism
|2 MeSH
650 _ 2 |a Microglia: metabolism
|2 MeSH
650 _ 2 |a tau Proteins: metabolism
|2 MeSH
650 _ 2 |a Ligands
|2 MeSH
650 _ 2 |a Prospective Studies
|2 MeSH
650 _ 2 |a Positron-Emission Tomography: methods
|2 MeSH
650 _ 2 |a Plaque, Amyloid: metabolism
|2 MeSH
650 _ 2 |a Brain: pathology
|2 MeSH
650 _ 2 |a Receptors, GABA: metabolism
|2 MeSH
700 1 _ |a Brendel, Matthias
|0 P:(DE-2719)9001539
|b 1
|u dzne
700 1 _ |a Franzmeier, Nicolai
|0 0000-0001-9736-2283
|b 2
700 1 _ |a Trappmann, Lena
|b 3
700 1 _ |a Zaganjori, Mirlind
|b 4
700 1 _ |a Ersoezlue, Ersin
|b 5
700 1 _ |a Morenas-Rodriguez, Estrella
|0 P:(DE-2719)2812759
|b 6
|u dzne
700 1 _ |a Guersel, Selim
|0 P:(DE-2719)9001027
|b 7
|u dzne
700 1 _ |a Burow, Lena
|b 8
700 1 _ |a Kurz, Carolin
|0 P:(DE-2719)9000176
|b 9
|u dzne
700 1 _ |a Haeckert, Jan
|b 10
700 1 _ |a Tatò, Maia
|b 11
700 1 _ |a Utecht, Julia
|0 P:(DE-2719)9000381
|b 12
|u dzne
700 1 _ |a Papazov, Boris
|b 13
700 1 _ |a Pogarell, Oliver
|b 14
700 1 _ |a Janowitz, Daniel
|b 15
700 1 _ |a Bürger, Katharina
|0 P:(DE-2719)2811351
|b 16
|u dzne
700 1 _ |a Ewers, Michael
|0 P:(DE-2719)9000543
|b 17
|u dzne
700 1 _ |a Palleis, Carla
|0 P:(DE-2719)9000852
|b 18
|u dzne
700 1 _ |a Weidinger, Endy
|0 P:(DE-2719)9000882
|b 19
|u dzne
700 1 _ |a Biechele, Gloria
|b 20
700 1 _ |a Schuster, Sebastian
|b 21
700 1 _ |a Finze, Anika
|b 22
700 1 _ |a Eckenweber, Florian
|b 23
700 1 _ |a Rupprecht, Rainer
|b 24
700 1 _ |a Rominger, Axel
|0 P:(DE-2719)9000971
|b 25
|u dzne
700 1 _ |a Goldhardt, Oliver
|0 0000-0002-3841-3391
|b 26
700 1 _ |a Grimmer, Timo
|b 27
700 1 _ |a Keeser, Daniel
|b 28
700 1 _ |a Stoecklein, Sophia
|0 0000-0003-0325-4674
|b 29
700 1 _ |a Dietrich, Olaf
|b 30
700 1 _ |a Bartenstein, Peter
|b 31
700 1 _ |a Levin, Johannes
|0 P:(DE-2719)2811659
|b 32
|u dzne
700 1 _ |a Höglinger, Günter
|0 P:(DE-2719)2811373
|b 33
|u dzne
700 1 _ |a Perneczky, Robert
|0 P:(DE-2719)2812234
|b 34
|e Last author
|u dzne
773 _ _ |a 10.1002/ana.26465
|g p. ana.26465
|0 PERI:(DE-600)2037912-2
|n 5
|p 768 - 781
|t Annals of neurology
|v 92
|y 2022
|x 0364-5134
856 4 _ |u https://pub.dzne.de/record/165257/files/DZNE-2022-01550.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/165257/files/DZNE-2022-01550.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:165257
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9001808
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-2719)9001539
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2812759
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)9001027
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-2719)9000176
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-2719)9000381
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 16
|6 P:(DE-2719)2811351
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 17
|6 P:(DE-2719)9000543
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 18
|6 P:(DE-2719)9000852
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 19
|6 P:(DE-2719)9000882
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 25
|6 P:(DE-2719)9000971
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 32
|6 P:(DE-2719)2811659
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 33
|6 P:(DE-2719)2811373
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 34
|6 P:(DE-2719)2812234
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 1
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 2
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-30
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANN NEUROL : 2021
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-30
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ANN NEUROL : 2021
|d 2022-11-30
920 1 _ |0 I:(DE-2719)1110008
|k AG Simons
|l Molecular Neurobiology
|x 0
920 1 _ |0 I:(DE-2719)1110007
|k AG Haass old
|l ALS, FTLD and Zebrafish models
|x 1
920 1 _ |0 I:(DE-2719)1111016
|k Clinical Dementia Research München
|l Clinical Dementia Research München
|x 2
920 1 _ |0 I:(DE-2719)1111015
|k AG Höglinger 2
|l Coordinator of Clinical Parkinson Research
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1110008
980 _ _ |a I:(DE-2719)5000015
980 _ _ |a I:(DE-2719)1111016
980 _ _ |a I:(DE-2719)1111015
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21