000165273 001__ 165273 000165273 005__ 20250127111035.0 000165273 0247_ $$2pmid$$apmid:36373840 000165273 0247_ $$2doi$$a10.1002/glia.24265 000165273 0247_ $$2ISSN$$a0894-1491 000165273 0247_ $$2ISSN$$a1098-1136 000165273 0247_ $$2altmetric$$aaltmetric:135836812 000165273 037__ $$aDZNE-2022-01566 000165273 041__ $$aEnglish 000165273 082__ $$a610 000165273 1001_ $$aHenning, Lukas$$b0 000165273 245__ $$aReactive microglia are the major source of tumor necrosis factor alpha and contribute to astrocyte dysfunction and acute seizures in experimental temporal lobe epilepsy 000165273 260__ $$aBognor Regis [u.a.]$$bWiley-Liss$$c2023 000165273 3367_ $$2DRIVER$$aarticle 000165273 3367_ $$2DataCite$$aOutput Types/Journal article 000165273 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671620585_26522 000165273 3367_ $$2BibTeX$$aARTICLE 000165273 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000165273 3367_ $$00$$2EndNote$$aJournal Article 000165273 500__ $$aCC BY-NC-ND: https://creativecommons.org/licenses/by-nc-nd/4.0/ 000165273 520__ $$a Extensive microglia reactivity has been well described in human and experimental temporal lobe epilepsy (TLE). To date, however, it is not clear whether and based on which molecular mechanisms microglia contribute to the development and progression of focal epilepsy. Astroglial gap junction coupled networks play an important role in regulating neuronal activity and loss of interastrocytic coupling causally contributes to TLE. Here, we show in the unilateral intracortical kainate (KA) mouse model of TLE that reactive microglia are primary producers of tumor necrosis factor (TNF)α and contribute to astrocyte dysfunction and severity of status epilepticus (SE). Immunohistochemical analyses revealed pronounced and persistent microglia reactivity, which already started 4 h after KA-induced SE. Partial depletion of microglia using a colony stimulating factor 1 receptor inhibitor prevented early astrocyte uncoupling and attenuated the severity of SE, but increased the mortality of epileptic mice following surgery. Using microglia-specific inducible TNFα knockout mice we identified microglia as the major source of TNFα during early epileptogenesis. Importantly, microglia-specific TNFα knockout prevented SE-induced gap junction uncoupling in astrocytes. Continuous telemetric EEG recordings revealed that during the first 4 weeks after SE induction, microglial TNFα did not significantly contribute to spontaneous generalized seizure activity. Moreover, the absence of microglial TNFα did not affect the development of hippocampal sclerosis but attenuated gliosis. Taken together, these data implicate reactive microglia in astrocyte dysfunction and network hyperexcitability after an epileptogenic insult. 000165273 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0 000165273 588__ $$aDataset connected to CrossRef, Journals: pub.dzne.de 000165273 650_7 $$2Other$$aastrocyte 000165273 650_7 $$2Other$$agap junction coupling 000165273 650_7 $$2Other$$ahippocampal sclerosis 000165273 650_7 $$2Other$$amicroglia 000165273 650_7 $$2Other$$atemporal lobe epilepsy 000165273 650_7 $$2Other$$atumor necrosis factor alpha 000165273 650_7 $$2NLM Chemicals$$aTumor Necrosis Factor-alpha 000165273 650_7 $$0SIV03811UC$$2NLM Chemicals$$aKainic Acid 000165273 650_2 $$2MeSH$$aMice 000165273 650_2 $$2MeSH$$aAnimals 000165273 650_2 $$2MeSH$$aHumans 000165273 650_2 $$2MeSH$$aEpilepsy, Temporal Lobe: pathology 000165273 650_2 $$2MeSH$$aAstrocytes: pathology 000165273 650_2 $$2MeSH$$aTumor Necrosis Factor-alpha 000165273 650_2 $$2MeSH$$aMicroglia: pathology 000165273 650_2 $$2MeSH$$aHippocampus: pathology 000165273 650_2 $$2MeSH$$aSeizures: pathology 000165273 650_2 $$2MeSH$$aStatus Epilepticus: pathology 000165273 650_2 $$2MeSH$$aKainic Acid: toxicity 000165273 650_2 $$2MeSH$$aDisease Models, Animal 000165273 650_2 $$2MeSH$$aMice, Knockout 000165273 7001_ $$aAntony, Henrike$$b1 000165273 7001_ $$0P:(DE-2719)9000501$$aBreuer, Annika$$b2$$udzne 000165273 7001_ $$aMüller, Julia$$b3 000165273 7001_ $$aSeifert, Gerald$$b4 000165273 7001_ $$aAudinat, Etienne$$b5 000165273 7001_ $$aSingh, Parmveer$$b6 000165273 7001_ $$0P:(DE-2719)2810593$$aBrosseron, Frederic$$b7$$udzne 000165273 7001_ $$0P:(DE-2719)2000008$$aHeneka, Michael T.$$b8$$udzne 000165273 7001_ $$00000-0003-2579-8357$$aSteinhäuser, Christian$$b9 000165273 7001_ $$00000-0003-0090-7553$$aBedner, Peter$$b10 000165273 773__ $$0PERI:(DE-600)1474828-9$$a10.1002/glia.24265$$gp. glia.24265$$n2$$p168 - 186$$tGlia$$v71$$x0894-1491$$y2023 000165273 8564_ $$uhttps://pub.dzne.de/record/165273/files/DZNE-2022-01566.pdf$$yOpenAccess 000165273 8564_ $$uhttps://pub.dzne.de/record/165273/files/DZNE-2022-01566.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000165273 909CO $$ooai:pub.dzne.de:165273$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000165273 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9000501$$aExternal Institute$$b2$$kExtern 000165273 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810593$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b7$$kDZNE 000165273 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)2000008$$aExternal Institute$$b8$$kExtern 000165273 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0 000165273 9141_ $$y2023 000165273 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-08 000165273 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-08 000165273 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000165273 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-08$$wger 000165273 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-08 000165273 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000165273 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-24$$wger 000165273 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24 000165273 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24 000165273 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24 000165273 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-24 000165273 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24 000165273 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-24 000165273 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGLIA : 2022$$d2023-08-24 000165273 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGLIA : 2022$$d2023-08-24 000165273 9201_ $$0I:(DE-2719)1011301$$kAG Heneka1 ; AG Heneka 1$$lInterventional Trials and Biomarkers in Neurodegenerative Diseases$$x0 000165273 980__ $$ajournal 000165273 980__ $$aVDB 000165273 980__ $$aUNRESTRICTED 000165273 980__ $$aI:(DE-2719)1011301 000165273 9801_ $$aFullTexts