001     165273
005     20250127111035.0
024 7 _ |a pmid:36373840
|2 pmid
024 7 _ |a 10.1002/glia.24265
|2 doi
024 7 _ |a 0894-1491
|2 ISSN
024 7 _ |a 1098-1136
|2 ISSN
024 7 _ |a altmetric:135836812
|2 altmetric
037 _ _ |a DZNE-2022-01566
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Henning, Lukas
|b 0
245 _ _ |a Reactive microglia are the major source of tumor necrosis factor alpha and contribute to astrocyte dysfunction and acute seizures in experimental temporal lobe epilepsy
260 _ _ |a Bognor Regis [u.a.]
|c 2023
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1671620585_26522
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a CC BY-NC-ND: https://creativecommons.org/licenses/by-nc-nd/4.0/
520 _ _ |a Extensive microglia reactivity has been well described in human and experimental temporal lobe epilepsy (TLE). To date, however, it is not clear whether and based on which molecular mechanisms microglia contribute to the development and progression of focal epilepsy. Astroglial gap junction coupled networks play an important role in regulating neuronal activity and loss of interastrocytic coupling causally contributes to TLE. Here, we show in the unilateral intracortical kainate (KA) mouse model of TLE that reactive microglia are primary producers of tumor necrosis factor (TNF)α and contribute to astrocyte dysfunction and severity of status epilepticus (SE). Immunohistochemical analyses revealed pronounced and persistent microglia reactivity, which already started 4 h after KA-induced SE. Partial depletion of microglia using a colony stimulating factor 1 receptor inhibitor prevented early astrocyte uncoupling and attenuated the severity of SE, but increased the mortality of epileptic mice following surgery. Using microglia-specific inducible TNFα knockout mice we identified microglia as the major source of TNFα during early epileptogenesis. Importantly, microglia-specific TNFα knockout prevented SE-induced gap junction uncoupling in astrocytes. Continuous telemetric EEG recordings revealed that during the first 4 weeks after SE induction, microglial TNFα did not significantly contribute to spontaneous generalized seizure activity. Moreover, the absence of microglial TNFα did not affect the development of hippocampal sclerosis but attenuated gliosis. Taken together, these data implicate reactive microglia in astrocyte dysfunction and network hyperexcitability after an epileptogenic insult.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: pub.dzne.de
650 _ 7 |a astrocyte
|2 Other
650 _ 7 |a gap junction coupling
|2 Other
650 _ 7 |a hippocampal sclerosis
|2 Other
650 _ 7 |a microglia
|2 Other
650 _ 7 |a temporal lobe epilepsy
|2 Other
650 _ 7 |a tumor necrosis factor alpha
|2 Other
650 _ 7 |a Tumor Necrosis Factor-alpha
|2 NLM Chemicals
650 _ 7 |a Kainic Acid
|0 SIV03811UC
|2 NLM Chemicals
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Epilepsy, Temporal Lobe: pathology
|2 MeSH
650 _ 2 |a Astrocytes: pathology
|2 MeSH
650 _ 2 |a Tumor Necrosis Factor-alpha
|2 MeSH
650 _ 2 |a Microglia: pathology
|2 MeSH
650 _ 2 |a Hippocampus: pathology
|2 MeSH
650 _ 2 |a Seizures: pathology
|2 MeSH
650 _ 2 |a Status Epilepticus: pathology
|2 MeSH
650 _ 2 |a Kainic Acid: toxicity
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
650 _ 2 |a Mice, Knockout
|2 MeSH
700 1 _ |a Antony, Henrike
|b 1
700 1 _ |a Breuer, Annika
|0 P:(DE-2719)9000501
|b 2
|u dzne
700 1 _ |a Müller, Julia
|b 3
700 1 _ |a Seifert, Gerald
|b 4
700 1 _ |a Audinat, Etienne
|b 5
700 1 _ |a Singh, Parmveer
|b 6
700 1 _ |a Brosseron, Frederic
|0 P:(DE-2719)2810593
|b 7
|u dzne
700 1 _ |a Heneka, Michael T.
|0 P:(DE-2719)2000008
|b 8
|u dzne
700 1 _ |a Steinhäuser, Christian
|0 0000-0003-2579-8357
|b 9
700 1 _ |a Bedner, Peter
|0 0000-0003-0090-7553
|b 10
773 _ _ |a 10.1002/glia.24265
|g p. glia.24265
|0 PERI:(DE-600)1474828-9
|n 2
|p 168 - 186
|t Glia
|v 71
|y 2023
|x 0894-1491
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/165273/files/DZNE-2022-01566.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/165273/files/DZNE-2022-01566.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:165273
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-2719)9000501
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2810593
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-2719)2000008
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-08
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-08
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-24
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GLIA : 2022
|d 2023-08-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b GLIA : 2022
|d 2023-08-24
920 1 _ |0 I:(DE-2719)1011301
|k AG Heneka1 ; AG Heneka 1
|l Interventional Trials and Biomarkers in Neurodegenerative Diseases
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1011301
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21