001     165276
005     20230915090615.0
024 7 _ |a 10.7554/eLife.78012
|2 doi
024 7 _ |a pmid:36043458
|2 pmid
024 7 _ |a pmc:PMC9433094
|2 pmc
024 7 _ |a altmetric:135208511
|2 altmetric
037 _ _ |a DZNE-2022-01569
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Carraro, Caterina
|0 P:(DE-2719)9001303
|b 0
|u dzne
245 _ _ |a Decoding mechanism of action and sensitivity to drug candidates from integrated transcriptome and chromatin state.
260 _ _ |a Cambridge
|c 2022
|b eLife Sciences Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1665484418_26138
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a CC BY: https://creativecommons.org/licenses/by/4.0/
520 _ _ |a Omics-based technologies are driving major advances in precision medicine, but efforts are still required to consolidate their use in drug discovery. In this work, we exemplify the use of multi-omics to support the development of 3-chloropiperidines, a new class of candidate anticancer agents. Combined analyses of transcriptome and chromatin accessibility elucidated the mechanisms underlying sensitivity to test agents. Furthermore, we implemented a new versatile strategy for the integration of RNA- and ATAC-seq (Assay for Transposase-Accessible Chromatin) data, able to accelerate and extend the standalone analyses of distinct omic layers. This platform guided the construction of a perturbation-informed basal signature predicting cancer cell lines' sensitivity and to further direct compound development against specific tumor types. Overall, this approach offers a scalable pipeline to support the early phases of drug discovery, understanding of mechanisms, and potentially inform the positioning of therapeutics in the clinic.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a chromatin accessibility
|2 Other
650 _ 7 |a computational biology
|2 Other
650 _ 7 |a drug candidate
|2 Other
650 _ 7 |a human
|2 Other
650 _ 7 |a mechanism of action
|2 Other
650 _ 7 |a multi-omics
|2 Other
650 _ 7 |a sensitivity ML prediction
|2 Other
650 _ 7 |a systems biology
|2 Other
650 _ 7 |a transcriptome
|2 Other
650 _ 7 |a Chromatin
|2 NLM Chemicals
650 _ 7 |a RNA
|0 63231-63-0
|2 NLM Chemicals
650 _ 7 |a Transposases
|0 EC 2.7.7.-
|2 NLM Chemicals
650 _ 2 |a Chromatin
|2 MeSH
650 _ 2 |a Precision Medicine
|2 MeSH
650 _ 2 |a RNA
|2 MeSH
650 _ 2 |a Transcriptome
|2 MeSH
650 _ 2 |a Transposases: metabolism
|2 MeSH
700 1 _ |a Bonaguro, Lorenzo
|0 P:(DE-2719)9001512
|b 1
|u dzne
700 1 _ |a Schulte-Schrepping, Jonas
|0 P:(DE-2719)9001500
|b 2
|u dzne
700 1 _ |a Horne, Arik
|0 P:(DE-2719)9002161
|b 3
|u dzne
700 1 _ |a Oestreich, Marie
|0 P:(DE-2719)9002070
|b 4
|u dzne
700 1 _ |a Warnat-Herresthal, Stefanie
|0 P:(DE-2719)9001511
|b 5
|u dzne
700 1 _ |a Helbing, Tim
|0 0000-0002-1284-3254
|b 6
700 1 _ |a De Franco, Michele
|b 7
700 1 _ |a Händler, Kristian
|0 P:(DE-2719)2812735
|b 8
|u dzne
700 1 _ |a Mukherjee, Sach
|0 P:(DE-2719)2811372
|b 9
|u dzne
700 1 _ |a Ulas, Thomas
|0 P:(DE-2719)9000845
|b 10
|u dzne
700 1 _ |a Gandin, Valentina
|b 11
700 1 _ |a Goettlich, Richard
|b 12
700 1 _ |a Aschenbrenner, Anna Christin
|0 P:(DE-2719)2812913
|b 13
|u dzne
700 1 _ |a Schultze, Joachim L
|0 P:(DE-2719)2811660
|b 14
|u dzne
700 1 _ |a Gatto, Barbara
|0 0000-0001-9465-6913
|b 15
773 _ _ |a 10.7554/eLife.78012
|g Vol. 11, p. e78012
|0 PERI:(DE-600)2687154-3
|p e78012
|t eLife
|v 11
|y 2022
|x 2050-084X
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/165276/files/DZNE-2022-01569.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/165276/files/DZNE-2022-01569.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:165276
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-2719)9001303
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9001512
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9001500
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9002161
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)9002070
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)9001511
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2812735
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2811372
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)9000845
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 13
|6 P:(DE-2719)2812913
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 14
|6 P:(DE-2719)2811660
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 1
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELIFE : 2021
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-23T12:20:44Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-23
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-23
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELIFE : 2021
|d 2022-11-23
920 1 _ |0 I:(DE-2719)1013031
|k AG Schultze
|l United epigenomic platform
|x 0
920 1 _ |0 I:(DE-2719)5000031
|k R&D PRECISE
|l Platform for Single Cell Genomics and Epigenomics at DZNE & University of Bonn
|x 1
920 1 _ |0 I:(DE-2719)1013030
|k AG Mukherjee
|l Statistics and machine learning
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013031
980 _ _ |a I:(DE-2719)5000031
980 _ _ |a I:(DE-2719)1013030
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21