000165318 001__ 165318
000165318 005__ 20230915090617.0
000165318 0247_ $$2pmc$$apmc:PMC9745484
000165318 0247_ $$2doi$$a10.1002/jcsm.13094
000165318 0247_ $$2pmid$$apmid:36254806
000165318 0247_ $$2ISSN$$a2190-5991
000165318 0247_ $$2ISSN$$a2190-6009
000165318 0247_ $$2altmetric$$aaltmetric:137350363
000165318 037__ $$aDZNE-2022-01596
000165318 041__ $$aEnglish
000165318 082__ $$a610
000165318 1001_ $$aShahriyari, Mina$$b0
000165318 245__ $$aEngineered skeletal muscle recapitulates human muscle development, regeneration and dystrophy.
000165318 260__ $$aHoboken, NJ$$bWiley$$c2022
000165318 3367_ $$2DRIVER$$aarticle
000165318 3367_ $$2DataCite$$aOutput Types/Journal article
000165318 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671619477_26522
000165318 3367_ $$2BibTeX$$aARTICLE
000165318 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000165318 3367_ $$00$$2EndNote$$aJournal Article
000165318 520__ $$aHuman pluripotent stem cell-derived muscle models show great potential for translational research. Here, we describe developmentally inspired methods for the derivation of skeletal muscle cells and their utility in skeletal muscle tissue engineering with the aim to model skeletal muscle regeneration and dystrophy in vitro.Key steps include the directed differentiation of human pluripotent stem cells to embryonic muscle progenitors followed by primary and secondary foetal myogenesis into three-dimensional muscle. To simulate Duchenne muscular dystrophy (DMD), a patient-specific induced pluripotent stem cell line was compared to a CRISPR/Cas9-edited isogenic control line.The established skeletal muscle differentiation protocol robustly and faithfully recapitulates critical steps of embryonic myogenesis in two-dimensional and three-dimensional cultures, resulting in functional human skeletal muscle organoids (SMOs) and engineered skeletal muscles (ESMs) with a regeneration-competent satellite-like cell pool. Tissue-engineered muscle exhibits organotypic maturation and function (up to 5.7 ± 0.5 mN tetanic twitch tension at 100 Hz in ESM). Contractile performance could be further enhanced by timed thyroid hormone treatment, increasing the speed of contraction (time to peak contraction) as well as relaxation (time to 50% relaxation) of single twitches from 107 ± 2 to 75 ± 4 ms (P < 0.05) and from 146 ± 6 to 100 ± 6 ms (P < 0.05), respectively. Satellite-like cells could be documented as largely quiescent PAX7+ cells (75 ± 6% Ki67- ) located adjacent to muscle fibres confined under a laminin-containing basal membrane. Activation of the engineered satellite-like cell niche was documented in a cardiotoxin injury model with marked recovery of contractility to 57 ± 8% of the pre-injury force 21 days post-injury (P < 0.05 compared to Day 2 post-injury), which was completely blocked by preceding irradiation. Absence of dystrophin in DMD ESM caused a marked reduction of contractile force (-35 ± 7%, P < 0.05) and impaired expression of fast myosin isoforms resulting in prolonged contraction (175 ± 14 ms, P < 0.05 vs. gene-edited control) and relaxation (238 ± 22 ms, P < 0.05 vs. gene-edited control) times. Restoration of dystrophin levels by gene editing rescued the DMD phenotype in ESM.We introduce human muscle models with canonical properties of bona fide skeletal muscle in vivo to study muscle development, maturation, disease and repair.
000165318 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000165318 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000165318 650_7 $$2Other$$aDuchenne muscular dystrophy
000165318 650_7 $$2Other$$ahypaxial dermomyotome
000165318 650_7 $$2Other$$alimb muscle
000165318 650_7 $$2Other$$asatellite cells
000165318 650_7 $$2Other$$askeletal muscle organoid
000165318 650_7 $$2Other$$asomite
000165318 650_7 $$2Other$$atissue engineering
000165318 650_2 $$2MeSH$$aHumans
000165318 650_2 $$2MeSH$$aMuscular Dystrophy, Duchenne: genetics
000165318 650_2 $$2MeSH$$aMuscle, Skeletal: metabolism
000165318 650_2 $$2MeSH$$aMuscle Development: genetics
000165318 650_2 $$2MeSH$$aSatellite Cells, Skeletal Muscle: metabolism
000165318 650_2 $$2MeSH$$aMuscle Fibers, Skeletal: metabolism
000165318 7001_ $$0P:(DE-2719)2811643$$aIslam, Rezaul$$b1$$udzne
000165318 7001_ $$0P:(DE-2719)2812054$$aSakib, Sadman M$$b2$$udzne
000165318 7001_ $$aRinn, Malte$$b3
000165318 7001_ $$aRika, Anastasia$$b4
000165318 7001_ $$0P:(DE-2719)2812548$$aKrüger, Dennis$$b5$$udzne
000165318 7001_ $$0P:(DE-2719)2812832$$aKaurani, Lalit$$b6$$udzne
000165318 7001_ $$0P:(DE-2719)9001957$$aGisa, Verena$$b7$$udzne
000165318 7001_ $$aWinterhoff, Mandy$$b8
000165318 7001_ $$aAnandakumar, Harithaa$$b9
000165318 7001_ $$0P:(DE-HGF)0$$aShomroni, Orr$$b10
000165318 7001_ $$aSchmidt, Matthias$$b11
000165318 7001_ $$aSalinas, Gabriela$$b12
000165318 7001_ $$aUnger, Andreas$$b13
000165318 7001_ $$aLinke, Wolfgang A$$b14
000165318 7001_ $$aZschüntzsch, Jana$$b15
000165318 7001_ $$aSchmidt, Jens$$b16
000165318 7001_ $$aBassel-Duby, Rhonda$$b17
000165318 7001_ $$aOlson, Eric N$$b18
000165318 7001_ $$0P:(DE-2719)2000047$$aFischer, André$$b19$$udzne
000165318 7001_ $$0P:(DE-HGF)0$$aZimmermann, Wolfram-Hubertus$$b20
000165318 7001_ $$00000-0002-6942-6275$$aTiburcy, Malte$$b21
000165318 773__ $$0PERI:(DE-600)2586864-0$$a10.1002/jcsm.13094$$gp. jcsm.13094$$n6$$p3106-3121$$tJournal of cachexia, sarcopenia and muscle$$v13$$x2190-5991$$y2022
000165318 8564_ $$uhttps://pub.dzne.de/record/165318/files/DZNE-2022-01596.pdf$$yOpenAccess
000165318 8564_ $$uhttps://pub.dzne.de/record/165318/files/DZNE-2022-01596.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000165318 909CO $$ooai:pub.dzne.de:165318$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000165318 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811643$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000165318 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812054$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000165318 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812548$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000165318 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812832$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000165318 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001957$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b7$$kDZNE
000165318 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2000047$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b19$$kDZNE
000165318 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000165318 9141_ $$y2022
000165318 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000165318 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000165318 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000165318 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000165318 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000165318 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000165318 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CACHEXIA SARCOPENI : 2021$$d2022-11-18
000165318 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18
000165318 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-18
000165318 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-04-16T15:13:28Z
000165318 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-04-16T15:13:28Z
000165318 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-04-16T15:13:28Z
000165318 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18
000165318 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18
000165318 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ CACHEXIA SARCOPENI : 2021$$d2022-11-18
000165318 9201_ $$0I:(DE-2719)1410002$$kAG Fischer 1$$lEpigenetics and Systems Medicine in Neurodegenerative Diseases$$x0
000165318 9201_ $$0I:(DE-2719)1440016$$kBioinformatics and Genome Dynamics Core$$lBioinformatics and Genome Dynamics Core$$x1
000165318 980__ $$ajournal
000165318 980__ $$aVDB
000165318 980__ $$aI:(DE-2719)1410002
000165318 980__ $$aI:(DE-2719)1440016
000165318 980__ $$aUNRESTRICTED
000165318 9801_ $$aFullTexts