001     165318
005     20230915090617.0
024 7 _ |a pmc:PMC9745484
|2 pmc
024 7 _ |a 10.1002/jcsm.13094
|2 doi
024 7 _ |a pmid:36254806
|2 pmid
024 7 _ |a 2190-5991
|2 ISSN
024 7 _ |a 2190-6009
|2 ISSN
024 7 _ |a altmetric:137350363
|2 altmetric
037 _ _ |a DZNE-2022-01596
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Shahriyari, Mina
|b 0
245 _ _ |a Engineered skeletal muscle recapitulates human muscle development, regeneration and dystrophy.
260 _ _ |a Hoboken, NJ
|c 2022
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1671619477_26522
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Human pluripotent stem cell-derived muscle models show great potential for translational research. Here, we describe developmentally inspired methods for the derivation of skeletal muscle cells and their utility in skeletal muscle tissue engineering with the aim to model skeletal muscle regeneration and dystrophy in vitro.Key steps include the directed differentiation of human pluripotent stem cells to embryonic muscle progenitors followed by primary and secondary foetal myogenesis into three-dimensional muscle. To simulate Duchenne muscular dystrophy (DMD), a patient-specific induced pluripotent stem cell line was compared to a CRISPR/Cas9-edited isogenic control line.The established skeletal muscle differentiation protocol robustly and faithfully recapitulates critical steps of embryonic myogenesis in two-dimensional and three-dimensional cultures, resulting in functional human skeletal muscle organoids (SMOs) and engineered skeletal muscles (ESMs) with a regeneration-competent satellite-like cell pool. Tissue-engineered muscle exhibits organotypic maturation and function (up to 5.7 ± 0.5 mN tetanic twitch tension at 100 Hz in ESM). Contractile performance could be further enhanced by timed thyroid hormone treatment, increasing the speed of contraction (time to peak contraction) as well as relaxation (time to 50% relaxation) of single twitches from 107 ± 2 to 75 ± 4 ms (P < 0.05) and from 146 ± 6 to 100 ± 6 ms (P < 0.05), respectively. Satellite-like cells could be documented as largely quiescent PAX7+ cells (75 ± 6% Ki67- ) located adjacent to muscle fibres confined under a laminin-containing basal membrane. Activation of the engineered satellite-like cell niche was documented in a cardiotoxin injury model with marked recovery of contractility to 57 ± 8% of the pre-injury force 21 days post-injury (P < 0.05 compared to Day 2 post-injury), which was completely blocked by preceding irradiation. Absence of dystrophin in DMD ESM caused a marked reduction of contractile force (-35 ± 7%, P < 0.05) and impaired expression of fast myosin isoforms resulting in prolonged contraction (175 ± 14 ms, P < 0.05 vs. gene-edited control) and relaxation (238 ± 22 ms, P < 0.05 vs. gene-edited control) times. Restoration of dystrophin levels by gene editing rescued the DMD phenotype in ESM.We introduce human muscle models with canonical properties of bona fide skeletal muscle in vivo to study muscle development, maturation, disease and repair.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Duchenne muscular dystrophy
|2 Other
650 _ 7 |a hypaxial dermomyotome
|2 Other
650 _ 7 |a limb muscle
|2 Other
650 _ 7 |a satellite cells
|2 Other
650 _ 7 |a skeletal muscle organoid
|2 Other
650 _ 7 |a somite
|2 Other
650 _ 7 |a tissue engineering
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Muscular Dystrophy, Duchenne: genetics
|2 MeSH
650 _ 2 |a Muscle, Skeletal: metabolism
|2 MeSH
650 _ 2 |a Muscle Development: genetics
|2 MeSH
650 _ 2 |a Satellite Cells, Skeletal Muscle: metabolism
|2 MeSH
650 _ 2 |a Muscle Fibers, Skeletal: metabolism
|2 MeSH
700 1 _ |a Islam, Rezaul
|0 P:(DE-2719)2811643
|b 1
|u dzne
700 1 _ |a Sakib, Sadman M
|0 P:(DE-2719)2812054
|b 2
|u dzne
700 1 _ |a Rinn, Malte
|b 3
700 1 _ |a Rika, Anastasia
|b 4
700 1 _ |a Krüger, Dennis
|0 P:(DE-2719)2812548
|b 5
|u dzne
700 1 _ |a Kaurani, Lalit
|0 P:(DE-2719)2812832
|b 6
|u dzne
700 1 _ |a Gisa, Verena
|0 P:(DE-2719)9001957
|b 7
|u dzne
700 1 _ |a Winterhoff, Mandy
|b 8
700 1 _ |a Anandakumar, Harithaa
|b 9
700 1 _ |a Shomroni, Orr
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Schmidt, Matthias
|b 11
700 1 _ |a Salinas, Gabriela
|b 12
700 1 _ |a Unger, Andreas
|b 13
700 1 _ |a Linke, Wolfgang A
|b 14
700 1 _ |a Zschüntzsch, Jana
|b 15
700 1 _ |a Schmidt, Jens
|b 16
700 1 _ |a Bassel-Duby, Rhonda
|b 17
700 1 _ |a Olson, Eric N
|b 18
700 1 _ |a Fischer, André
|0 P:(DE-2719)2000047
|b 19
|u dzne
700 1 _ |a Zimmermann, Wolfram-Hubertus
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Tiburcy, Malte
|0 0000-0002-6942-6275
|b 21
773 _ _ |a 10.1002/jcsm.13094
|g p. jcsm.13094
|0 PERI:(DE-600)2586864-0
|n 6
|p 3106-3121
|t Journal of cachexia, sarcopenia and muscle
|v 13
|y 2022
|x 2190-5991
856 4 _ |u https://pub.dzne.de/record/165318/files/DZNE-2022-01596.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/165318/files/DZNE-2022-01596.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:165318
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2811643
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2812054
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2812548
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2812832
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)9001957
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 19
|6 P:(DE-2719)2000047
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CACHEXIA SARCOPENI : 2021
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-04-16T15:13:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-04-16T15:13:28Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-04-16T15:13:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-18
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J CACHEXIA SARCOPENI : 2021
|d 2022-11-18
920 1 _ |0 I:(DE-2719)1410002
|k AG Fischer 1
|l Epigenetics and Systems Medicine in Neurodegenerative Diseases
|x 0
920 1 _ |0 I:(DE-2719)1440016
|k Bioinformatics and Genome Dynamics Core
|l Bioinformatics and Genome Dynamics Core
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1410002
980 _ _ |a I:(DE-2719)1440016
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21