001     165324
005     20230915090617.0
024 7 _ |a pmc:PMC9668628
|2 pmc
024 7 _ |a 10.1016/j.nicl.2022.103213
|2 doi
024 7 _ |a pmid:36270162
|2 pmid
037 _ _ |a DZNE-2022-01602
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Lindig, Tobias
|0 P:(DE-2719)9000938
|b 0
|u dzne
245 _ _ |a Detection of spinal long fiber tract degeneration in HSP: Improved diffusion tensor imaging.
260 _ _ |a [Amsterdam u.a.]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1668698982_26688
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Spinal diffusion tensor imaging (sDTI) is still a challenging technique for selectively evaluating anatomical areas like the pyramidal tracts (PT), dorsal columns (DC), and anterior horns (AH) in clinical routine and for reliably quantifying white matter anisotropy and diffusivity. In neurodegenerative diseases, the value of sDTI is promising but not yet well understood. The objective of this prospective, single-center study was to evaluate the long fiber tract degeneration within the spinal cord in normal aging (n = 125) and to prove its applicability in pathologic conditions as in patients with molecular genetically confirmed hereditary spastic paraplegias (HSP; n = 40), a prototypical disease of the first motor neuron and in some genetic variants with affection of the dorsal columns. An optimized monopolar Stejskal-Tanner sequence for high-resolution, axial sDTI of the cervical spinal cord at 3.0 T with advanced standardized evaluation methods was developed for a robust DTI value estimation of PT, DC, and AH in both groups. After sDTI measurement at C2, an automatic motion correction and an advanced semi-automatic ROI-based, standardized evaluation of white matter anisotropy and diffusivity was performed to obtain regional diffusivity measures for PT, DC, and AH. Reliable and stable sDTI values were acquired in a healthy population without significant decline between age 20 and 65. Reference values for PT, DC, and AH for fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) were established. In HSP patients, the decline of the long spinal fiber tracts could be demonstrated by diffusivity abnormalities in the pyramidal tracts with significantly reduced PTFA (p < 0.001), elevated PTRD (p = 0.002) and reduced PTMD (p = 0.003) compared to healthy controls. Furthermore, FA was significantly reduced in DCFA (p < 0.001) with no differences in AH. In a genetically homogeneous subgroup of SPG4 patients (n = 12) with affection of the dorsal columns, DCRD significantly correlated with the overall disease severity as measured by the Spastic Paraplegia Rating Scale (SPRS) (r = - 0.713, p = 0.009). With the most extensive sDTI study in vivo to date, we showed that axial sDTI combined with motion correction and advanced data post-processing strategies enables robust measurements and is ready to use, allowing recognition and quantification of disease- and age-related changes of the PT, DC, and AH. These results may also encourage the usage of sDTI in other neurodegenerative diseases with spinal cord involvement to explore its capability as selective biomarkers.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Fractional anisotropy
|2 Other
650 _ 7 |a Hereditary spastic paraplegia
|2 Other
650 _ 7 |a Pyramidal degeneration
|2 Other
650 _ 7 |a Radial diffusivity
|2 Other
650 _ 7 |a Spinal diffusion tensor imaging
|2 Other
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Young Adult
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Diffusion Tensor Imaging: methods
|2 MeSH
650 _ 2 |a Prospective Studies
|2 MeSH
650 _ 2 |a White Matter: diagnostic imaging
|2 MeSH
650 _ 2 |a White Matter: pathology
|2 MeSH
650 _ 2 |a Anisotropy
|2 MeSH
650 _ 2 |a Pyramidal Tracts: diagnostic imaging
|2 MeSH
700 1 _ |a Ruff, Christer
|b 1
700 1 _ |a Rattay, Tim W
|0 P:(DE-2719)2811827
|b 2
|u dzne
700 1 _ |a König, Stephan
|b 3
700 1 _ |a Schöls, Ludger
|0 P:(DE-2719)2810795
|b 4
|u dzne
700 1 _ |a Schüle, Rebecca
|0 P:(DE-2719)2812018
|b 5
|u dzne
700 1 _ |a Nägele, Thomas
|b 6
700 1 _ |a Ernemann, Ulrike
|b 7
700 1 _ |a Klose, Uwe
|b 8
700 1 _ |a Bender, Benjamin
|0 P:(DE-2719)9001506
|b 9
|u dzne
773 _ _ |a 10.1016/j.nicl.2022.103213
|g Vol. 36, p. 103213 -
|0 PERI:(DE-600)2701571-3
|p 103213
|t NeuroImage: Clinical
|v 36
|y 2022
|x 2213-1582
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/165324/files/DZNE-2022-01602.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/165324/files/DZNE-2022-01602.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:165324
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-2719)9000938
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2811827
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2810795
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2812018
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-2719)9001506
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE-CLIN : 2021
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-13T10:57:54Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-13T10:57:54Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-10-13T10:57:54Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-15
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-15
920 1 _ |0 I:(DE-2719)1240005
|k Core ICRU
|l Core ICRU
|x 0
920 1 _ |0 I:(DE-2719)1210000
|k AG Gasser 1
|l Parkinson Genetics
|x 1
920 1 _ |0 I:(DE-2719)5000024
|k AG Maetzler
|l Functional Neurogeriatrics
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1240005
980 _ _ |a I:(DE-2719)1210000
980 _ _ |a I:(DE-2719)5000024
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21