001     165350
005     20230915090618.0
024 7 _ |a pmc:PMC9670194
|2 pmc
024 7 _ |a 10.15252/embj.2022110963
|2 doi
024 7 _ |a pmid:36217825
|2 pmid
024 7 _ |a 0261-4189
|2 ISSN
024 7 _ |a 1460-2075
|2 ISSN
024 7 _ |a altmetric:137002388
|2 altmetric
037 _ _ |a DZNE-2022-01627
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Overhoff, Melina
|0 0000-0002-4208-8632
|b 0
245 _ _ |a Autophagy regulates neuronal excitability by controlling cAMP/protein kinase A signaling at the synapse.
260 _ _ |a Hoboken, NJ [u.a.]
|c 2022
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1671620400_26523
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Autophagy provides nutrients during starvation and eliminates detrimental cellular components. However, accumulating evidence indicates that autophagy is not merely a housekeeping process. Here, by combining mouse models of neuron-specific ATG5 deficiency in either excitatory or inhibitory neurons with quantitative proteomics, high-content microscopy, and live-imaging approaches, we show that autophagy protein ATG5 functions in neurons to regulate cAMP-dependent protein kinase A (PKA)-mediated phosphorylation of a synapse-confined proteome. This function of ATG5 is independent of bulk turnover of synaptic proteins and requires the targeting of PKA inhibitory R1 subunits to autophagosomes. Neuronal loss of ATG5 causes synaptic accumulation of PKA-R1, which sequesters the PKA catalytic subunit and diminishes cAMP/PKA-dependent phosphorylation of postsynaptic cytoskeletal proteins that mediate AMPAR trafficking. Furthermore, ATG5 deletion in glutamatergic neurons augments AMPAR-dependent excitatory neurotransmission and causes the appearance of spontaneous recurrent seizures in mice. Our findings identify a novel role of autophagy in regulating PKA signaling at glutamatergic synapses and suggest the PKA as a target for restoration of synaptic function in neurodegenerative conditions with autophagy dysfunction.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a PKA
|2 Other
650 _ 7 |a autophagy
|2 Other
650 _ 7 |a brain
|2 Other
650 _ 7 |a phosphorylation
|2 Other
650 _ 7 |a synapse
|2 Other
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Synapses: metabolism
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Cyclic AMP-Dependent Protein Kinases: metabolism
|2 MeSH
650 _ 2 |a Signal Transduction
|2 MeSH
650 _ 2 |a Autophagy
|2 MeSH
700 1 _ |a Tellkamp, Frederik
|0 0000-0002-0473-7320
|b 1
700 1 _ |a Hess, Simon
|0 0000-0001-6085-5156
|b 2
700 1 _ |a Tolve, Marianna
|0 0000-0002-0893-2967
|b 3
700 1 _ |a Tutas, Janine
|b 4
700 1 _ |a Faerfers, Marcel
|b 5
700 1 _ |a Ickert, Lotte
|b 6
700 1 _ |a Mohammadi, Milad
|0 0000-0003-1755-108X
|b 7
700 1 _ |a De Bruyckere, Elodie
|b 8
700 1 _ |a Kallergi, Emmanouela
|b 9
700 1 _ |a Delle Vedove, Andrea
|0 0000-0003-4771-9808
|b 10
700 1 _ |a Nikoletopoulou, Vassiliki
|b 11
700 1 _ |a Wirth, Brunhilde
|0 0000-0003-4051-5191
|b 12
700 1 _ |a Isensee, Joerg
|b 13
700 1 _ |a Hucho, Tim
|0 0000-0002-4147-9308
|b 14
700 1 _ |a Puchkov, Dmytro
|0 0000-0001-8341-4847
|b 15
700 1 _ |a Isbrandt, Dirk
|0 P:(DE-2719)2810976
|b 16
|u dzne
700 1 _ |a Krueger, Marcus
|b 17
700 1 _ |a Kloppenburg, Peter
|0 0000-0002-4554-404X
|b 18
700 1 _ |a Kononenko, Natalia L
|0 0000-0002-3425-6659
|b 19
773 _ _ |a 10.15252/embj.2022110963
|0 PERI:(DE-600)1467419-1
|n 22
|p e110963
|t The EMBO journal
|v 41
|y 2022
|x 0261-4189
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/165350/files/DZNE-2022-01627.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/165350/files/DZNE-2022-01627.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:165350
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 16
|6 P:(DE-2719)2810976
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EMBO J : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-12
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EMBO J : 2021
|d 2022-11-12
920 1 _ |0 I:(DE-2719)1011003
|k AG Isbrandt
|l Experimental Neurophysiology
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1011003
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21