Home > Publications Database > Human variation in population-wide gene expression data predicts gene perturbation phenotype. > print |
001 | 165517 | ||
005 | 20240918164038.0 | ||
024 | 7 | _ | |a 10.1016/j.isci.2022.105328 |2 doi |
024 | 7 | _ | |a pmid:36310583 |2 pmid |
024 | 7 | _ | |a pmc:PMC9614568 |2 pmc |
024 | 7 | _ | |a altmetric:137889971 |2 altmetric |
037 | _ | _ | |a DZNE-2022-01665 |
041 | _ | _ | |a English |
082 | _ | _ | |a 050 |
100 | 1 | _ | |a Bonaguro, Lorenzo |0 P:(DE-2719)9001512 |b 0 |e First author |u dzne |
245 | _ | _ | |a Human variation in population-wide gene expression data predicts gene perturbation phenotype. |
260 | _ | _ | |a St. Louis |c 2022 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1726661598_30554 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Population-scale datasets of healthy individuals capture genetic and environmental factors influencing gene expression. The expression variance of a gene of interest (GOI) can be exploited to set up a quasi loss- or gain-of-function 'in population' experiment. We describe here an approach, huva (human variation), taking advantage of population-scale multi-layered data to infer gene function and relationships between phenotypes and expression. Within a reference dataset, huva derives two experimental groups with LOW or HIGH expression of the GOI, enabling the subsequent comparison of their transcriptional profile and functional parameters. We demonstrate that this approach robustly identifies the phenotypic relevance of a GOI allowing the stratification of genes according to biological functions, and we generalize this concept to almost 16,000 genes in the human transcriptome. Additionally, we describe how huva predicts monocytes to be the major cell type in the pathophysiology of STAT1 mutations, evidence validated in a clinical cohort. |
536 | _ | _ | |a 352 - Disease Mechanisms (POF4-352) |0 G:(DE-HGF)POF4-352 |c POF4-352 |f POF IV |x 0 |
536 | _ | _ | |a 354 - Disease Prevention and Healthy Aging (POF4-354) |0 G:(DE-HGF)POF4-354 |c POF4-354 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
650 | _ | 7 | |a Clinical genetics |2 Other |
650 | _ | 7 | |a Human genetics |2 Other |
650 | _ | 7 | |a Pathophysiology |2 Other |
700 | 1 | _ | |a Schulte-Schrepping, Jonas |0 P:(DE-2719)9001500 |b 1 |u dzne |
700 | 1 | _ | |a Carraro, Caterina |0 P:(DE-2719)9001303 |b 2 |u dzne |
700 | 1 | _ | |a Sun, Laura L |b 3 |
700 | 1 | _ | |a Reiz, Benedikt |b 4 |
700 | 1 | _ | |a Gemünd, Ioanna |0 P:(DE-2719)2812074 |b 5 |u dzne |
700 | 1 | _ | |a Saglam, Adem |0 P:(DE-2719)2812564 |b 6 |u dzne |
700 | 1 | _ | |a Rahmouni, Souad |b 7 |
700 | 1 | _ | |a Georges, Michel |b 8 |
700 | 1 | _ | |a Arts, Peer |b 9 |
700 | 1 | _ | |a Hoischen, Alexander |b 10 |
700 | 1 | _ | |a Joosten, Leo A B |b 11 |
700 | 1 | _ | |a van de Veerdonk, Frank L |b 12 |
700 | 1 | _ | |a Netea, Mihai G |b 13 |
700 | 1 | _ | |a Händler, Kristian |0 P:(DE-2719)2812735 |b 14 |u dzne |
700 | 1 | _ | |a Mukherjee, Sach |0 P:(DE-2719)2811372 |b 15 |u dzne |
700 | 1 | _ | |a Ulas, Thomas |0 P:(DE-2719)9000845 |b 16 |u dzne |
700 | 1 | _ | |a Schultze, Joachim L |0 P:(DE-2719)2811660 |b 17 |u dzne |
700 | 1 | _ | |a Aschenbrenner, Anna Christin |0 P:(DE-2719)2812913 |b 18 |e Last author |u dzne |
773 | _ | _ | |a 10.1016/j.isci.2022.105328 |g Vol. 25, no. 11, p. 105328 - |0 PERI:(DE-600)2927064-9 |n 11 |p 105328 |t iScience |v 25 |y 2022 |x 2589-0042 |
856 | 4 | _ | |u https://pub.dzne.de/record/165517/files/DZNE-2022-01665%20SUP.zip |
856 | 4 | _ | |u https://pub.dzne.de/record/165517/files/DZNE-2022-01665.pdf |y OpenAccess |
856 | 4 | _ | |u https://pub.dzne.de/record/165517/files/DZNE-2022-01665.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:pub.dzne.de:165517 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 0 |6 P:(DE-2719)9001512 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 1 |6 P:(DE-2719)9001500 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 2 |6 P:(DE-2719)9001303 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 5 |6 P:(DE-2719)2812074 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 6 |6 P:(DE-2719)2812564 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 14 |6 P:(DE-2719)2812735 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 15 |6 P:(DE-2719)2811372 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 16 |6 P:(DE-2719)9000845 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 17 |6 P:(DE-2719)2811660 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 18 |6 P:(DE-2719)2812913 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-352 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Mechanisms |x 0 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-354 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Prevention and Healthy Aging |x 1 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-06-15 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-06-15 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-06-15 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-06-15 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ISCIENCE : 2021 |d 2022-11-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-06-28T09:42:31Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-06-28T09:42:31Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-06-28T09:42:31Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-16 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ISCIENCE : 2021 |d 2022-11-16 |
920 | 1 | _ | |0 I:(DE-2719)1013031 |k PRECISE |l Platform for Single Cell Genomics and Epigenomics |x 0 |
920 | 1 | _ | |0 I:(DE-2719)1013030 |k AG Mukherjee |l Statistics and Machine Learning |x 1 |
920 | 1 | _ | |0 I:(DE-2719)1013034 |k AG Halle |l Microglia and Neuroinflammation |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-2719)1013031 |
980 | _ | _ | |a I:(DE-2719)1013030 |
980 | _ | _ | |a I:(DE-2719)1013034 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|