001     165517
005     20240918164038.0
024 7 _ |a 10.1016/j.isci.2022.105328
|2 doi
024 7 _ |a pmid:36310583
|2 pmid
024 7 _ |a pmc:PMC9614568
|2 pmc
024 7 _ |a altmetric:137889971
|2 altmetric
037 _ _ |a DZNE-2022-01665
041 _ _ |a English
082 _ _ |a 050
100 1 _ |a Bonaguro, Lorenzo
|0 P:(DE-2719)9001512
|b 0
|e First author
|u dzne
245 _ _ |a Human variation in population-wide gene expression data predicts gene perturbation phenotype.
260 _ _ |a St. Louis
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1726661598_30554
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Population-scale datasets of healthy individuals capture genetic and environmental factors influencing gene expression. The expression variance of a gene of interest (GOI) can be exploited to set up a quasi loss- or gain-of-function 'in population' experiment. We describe here an approach, huva (human variation), taking advantage of population-scale multi-layered data to infer gene function and relationships between phenotypes and expression. Within a reference dataset, huva derives two experimental groups with LOW or HIGH expression of the GOI, enabling the subsequent comparison of their transcriptional profile and functional parameters. We demonstrate that this approach robustly identifies the phenotypic relevance of a GOI allowing the stratification of genes according to biological functions, and we generalize this concept to almost 16,000 genes in the human transcriptome. Additionally, we describe how huva predicts monocytes to be the major cell type in the pathophysiology of STAT1 mutations, evidence validated in a clinical cohort.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Clinical genetics
|2 Other
650 _ 7 |a Human genetics
|2 Other
650 _ 7 |a Pathophysiology
|2 Other
700 1 _ |a Schulte-Schrepping, Jonas
|0 P:(DE-2719)9001500
|b 1
|u dzne
700 1 _ |a Carraro, Caterina
|0 P:(DE-2719)9001303
|b 2
|u dzne
700 1 _ |a Sun, Laura L
|b 3
700 1 _ |a Reiz, Benedikt
|b 4
700 1 _ |a Gemünd, Ioanna
|0 P:(DE-2719)2812074
|b 5
|u dzne
700 1 _ |a Saglam, Adem
|0 P:(DE-2719)2812564
|b 6
|u dzne
700 1 _ |a Rahmouni, Souad
|b 7
700 1 _ |a Georges, Michel
|b 8
700 1 _ |a Arts, Peer
|b 9
700 1 _ |a Hoischen, Alexander
|b 10
700 1 _ |a Joosten, Leo A B
|b 11
700 1 _ |a van de Veerdonk, Frank L
|b 12
700 1 _ |a Netea, Mihai G
|b 13
700 1 _ |a Händler, Kristian
|0 P:(DE-2719)2812735
|b 14
|u dzne
700 1 _ |a Mukherjee, Sach
|0 P:(DE-2719)2811372
|b 15
|u dzne
700 1 _ |a Ulas, Thomas
|0 P:(DE-2719)9000845
|b 16
|u dzne
700 1 _ |a Schultze, Joachim L
|0 P:(DE-2719)2811660
|b 17
|u dzne
700 1 _ |a Aschenbrenner, Anna Christin
|0 P:(DE-2719)2812913
|b 18
|e Last author
|u dzne
773 _ _ |a 10.1016/j.isci.2022.105328
|g Vol. 25, no. 11, p. 105328 -
|0 PERI:(DE-600)2927064-9
|n 11
|p 105328
|t iScience
|v 25
|y 2022
|x 2589-0042
856 4 _ |u https://pub.dzne.de/record/165517/files/DZNE-2022-01665%20SUP.zip
856 4 _ |u https://pub.dzne.de/record/165517/files/DZNE-2022-01665.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/165517/files/DZNE-2022-01665.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:165517
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9001512
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9001500
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9001303
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2812074
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2812564
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 14
|6 P:(DE-2719)2812735
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 15
|6 P:(DE-2719)2811372
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 16
|6 P:(DE-2719)9000845
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 17
|6 P:(DE-2719)2811660
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 18
|6 P:(DE-2719)2812913
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 1
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-06-15
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-06-15
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-06-15
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-06-15
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ISCIENCE : 2021
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-06-28T09:42:31Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-06-28T09:42:31Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-06-28T09:42:31Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ISCIENCE : 2021
|d 2022-11-16
920 1 _ |0 I:(DE-2719)1013031
|k PRECISE
|l Platform for Single Cell Genomics and Epigenomics
|x 0
920 1 _ |0 I:(DE-2719)1013030
|k AG Mukherjee
|l Statistics and Machine Learning
|x 1
920 1 _ |0 I:(DE-2719)1013034
|k AG Halle
|l Microglia and Neuroinflammation
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1013031
980 _ _ |a I:(DE-2719)1013030
980 _ _ |a I:(DE-2719)1013034
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21