001     165602
005     20240112171933.0
024 7 _ |a 10.1002/alz.12867
|2 doi
024 7 _ |a pmid:36433865
|2 pmid
024 7 _ |a 1552-5260
|2 ISSN
024 7 _ |a 1552-5279
|2 ISSN
024 7 _ |a altmetric:138952865
|2 altmetric
037 _ _ |a DZNE-2022-01735
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Steward, Anna
|b 0
245 _ _ |a Functional network segregation is associated with attenuated tau spreading in Alzheimer's disease.
260 _ _ |a Hoboken, NJ
|c 2023
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1684158715_1958
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Lower network segregation is associated with accelerated cognitive decline in Alzheimer's disease (AD), yet it is unclear whether less segregated brain networks facilitate connectivity-mediated tau spreading.We combined resting state functional magnetic resonance imaging (fMRI) with longitudinal tau positron emission tomography (PET) in 42 betamyloid-negative controls and 81 amyloid beta positive individuals across the AD spectrum. Network segregation was determined using resting-state fMRI-assessed connectivity among 400 cortical regions belonging to seven networks.AD subjects with higher network segregation exhibited slower brain-wide tau accumulation relative to their baseline entorhinal tau PET burden (typical onset site of tau pathology). Second, by identifying patient-specific tau epicenters with highest baseline tau PET we found that stronger epicenter segregation was associated with a slower rate of tau accumulation in the rest of the brain in relation to baseline epicenter tau burden.Our results indicate that tau spreading is facilitated by a more diffusely organized connectome, suggesting that brain network topology modulates tau spreading in AD.Higher brain network segregation is associated with attenuated tau pathology accumulation in Alzheimer's disease (AD). A patient-tailored approach allows for the more precise localization of tau epicenters. The functional segregation of subject-specific tau epicenters predicts the rate of future tau accumulation.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 1
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 2
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Alzheimer Disease: pathology
|2 MeSH
650 _ 2 |a Amyloid beta-Peptides: metabolism
|2 MeSH
650 _ 2 |a Brain: pathology
|2 MeSH
650 _ 2 |a Cognitive Dysfunction: pathology
|2 MeSH
650 _ 2 |a Connectome: methods
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: methods
|2 MeSH
650 _ 2 |a Positron-Emission Tomography
|2 MeSH
650 _ 2 |a tau Proteins: metabolism
|2 MeSH
650 _ 7 |a Amyloid beta-Peptides
|2 NLM Chemicals
650 _ 7 |a Alzheimer's disease
|2 Other
650 _ 7 |a functional magnetic resonance imaging
|2 Other
650 _ 7 |a network segregation
|2 Other
650 _ 7 |a tau positron emission tomography
|2 Other
650 _ 7 |a tau spreading
|2 Other
650 _ 7 |a tau Proteins
|2 NLM Chemicals
700 1 _ |a Biel, Davina
|b 1
700 1 _ |a Brendel, Matthias
|0 P:(DE-2719)9001539
|b 2
|u dzne
700 1 _ |a Dewenter, Anna
|b 3
700 1 _ |a Roemer, Sebastian
|b 4
700 1 _ |a Rubinski, Anna
|0 P:(DE-2719)2812415
|b 5
|u dzne
700 1 _ |a Luan, Ying
|b 6
700 1 _ |a Dichgans, Martin
|0 P:(DE-2719)2000030
|b 7
|u dzne
700 1 _ |a Ewers, Michael
|0 P:(DE-2719)9000543
|b 8
|u dzne
700 1 _ |a Franzmeier, Nicolai
|b 9
700 1 _ |a Initiative, Alzheimer's Disease Neuroimaging
|b 10
|e Collaboration Author
773 _ _ |a 10.1002/alz.12867
|g p. alz.12867
|0 PERI:(DE-600)2201940-6
|n 5
|p 2034-2046
|t Alzheimer's and dementia
|v 19
|y 2023
|x 1552-5260
856 4 _ |u https://pub.dzne.de/record/165602/files/DZNE-2022-01735%20SUP1.doc
856 4 _ |u https://pub.dzne.de/record/165602/files/DZNE-2022-01735%20SUP1.docx
856 4 _ |u https://pub.dzne.de/record/165602/files/DZNE-2022-01735%20SUP1.odt
856 4 _ |u https://pub.dzne.de/record/165602/files/DZNE-2022-01735%20SUP1.pdf
856 4 _ |u https://pub.dzne.de/record/165602/files/DZNE-2022-01735%20SUP2.docx
856 4 _ |u https://pub.dzne.de/record/165602/files/DZNE-2022-01735%20SUP2.odt
856 4 _ |u https://pub.dzne.de/record/165602/files/DZNE-2022-01735%20SUP2.pdf
856 4 _ |u https://pub.dzne.de/record/165602/files/DZNE-2022-01735%20SUP3.doc
856 4 _ |u https://pub.dzne.de/record/165602/files/DZNE-2022-01735%20SUP3.docx
856 4 _ |u https://pub.dzne.de/record/165602/files/DZNE-2022-01735%20SUP3.odt
856 4 _ |u https://pub.dzne.de/record/165602/files/DZNE-2022-01735%20SUP3.pdf
856 4 _ |u https://pub.dzne.de/record/165602/files/DZNE-2022-01735.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/165602/files/DZNE-2022-01735.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:165602
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9001539
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-2719)2812415
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2000030
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)9000543
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 1
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 2
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ALZHEIMERS DEMENT : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-25
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ALZHEIMERS DEMENT : 2022
|d 2023-10-25
920 1 _ |0 I:(DE-2719)1110007
|k AG Haass old ; AG Haass
|l Molecular Neurodegeneration
|x 0
920 1 _ |0 I:(DE-2719)5000022
|k AG Dichgans
|l Vascular Cognitive Impairment & Post-Stroke Dementia
|x 1
920 1 _ |0 I:(DE-2719)1110008
|k AG Simons
|l Molecular Neurobiology
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1110007
980 _ _ |a I:(DE-2719)5000022
980 _ _ |a I:(DE-2719)1110008
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21