001     165614
005     20250717145832.0
024 7 _ |a 10.1038/s41593-022-01199-y
|2 doi
024 7 _ |a pmid:36424432
|2 pmid
024 7 _ |a 1097-6256
|2 ISSN
024 7 _ |a 1546-1726
|2 ISSN
024 7 _ |a altmetric:138913201
|2 altmetric
037 _ _ |a DZNE-2022-01747
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Zambusi, Alessandro
|b 0
245 _ _ |a TDP-43 condensates and lipid droplets regulate the reactivity of microglia and regeneration after traumatic brain injury.
260 _ _ |a New York, NY
|c 2022
|b Nature America
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752757043_27527
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Decreasing the activation of pathology-activated microglia is crucial to prevent chronic inflammation and tissue scarring. In this study, we used a stab wound injury model in zebrafish and identified an injury-induced microglial state characterized by the accumulation of lipid droplets and TAR DNA-binding protein of 43 kDa (TDP-43)+ condensates. Granulin-mediated clearance of both lipid droplets and TDP-43+ condensates was necessary and sufficient to promote the return of microglia back to the basal state and achieve scarless regeneration. Moreover, in postmortem cortical brain tissues from patients with traumatic brain injury, the extent of microglial activation correlated with the accumulation of lipid droplets and TDP-43+ condensates. Together, our results reveal a mechanism required for restoring microglia to a nonactivated state after injury, which has potential for new therapeutic applications in humans.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a DNA-Binding Proteins
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Microglia
|2 MeSH
650 _ 2 |a Lipid Droplets
|2 MeSH
650 _ 2 |a Zebrafish
|2 MeSH
650 _ 2 |a Brain Injuries, Traumatic
|2 MeSH
650 _ 2 |a DNA-Binding Proteins
|2 MeSH
650 _ 2 |a Regeneration
|2 MeSH
700 1 _ |a Novoselc, Klara Tereza
|b 1
700 1 _ |a Hutten, Saskia
|b 2
700 1 _ |a Kalpazidou, Sofia
|b 3
700 1 _ |a Koupourtidou, Christina
|0 0000-0002-8352-1498
|b 4
700 1 _ |a Schieweck, Rico
|b 5
700 1 _ |a Aschenbroich, Sven
|0 P:(DE-2719)2812151
|b 6
|u dzne
700 1 _ |a Silva, Lara
|b 7
700 1 _ |a Yazgili, Ayse Seda
|0 0000-0001-8485-9653
|b 8
700 1 _ |a van Bebber, Frauke
|0 P:(DE-2719)9000319
|b 9
|u dzne
700 1 _ |a Schmid, Bettina
|0 P:(DE-2719)2241638
|b 10
|u dzne
700 1 _ |a Möller, Gabriel
|0 0000-0002-8731-4330
|b 11
700 1 _ |a Tritscher, Clara
|b 12
700 1 _ |a Stigloher, Christian
|0 0000-0001-6941-2669
|b 13
700 1 _ |a Delbridge, Claire
|b 14
700 1 _ |a Sirko, Swetlana
|0 0000-0001-5950-616X
|b 15
700 1 _ |a Günes, Zeynep Irem
|0 P:(DE-2719)2812248
|b 16
|u dzne
700 1 _ |a Liebscher, Sabine
|0 P:(DE-2719)9000187
|b 17
|u dzne
700 1 _ |a Schlegel, Jürgen
|b 18
700 1 _ |a Aliee, Hananeh
|b 19
700 1 _ |a Theis, Fabian
|0 0000-0002-2419-1943
|b 20
700 1 _ |a Meiners, Silke
|b 21
700 1 _ |a Kiebler, Michael
|b 22
700 1 _ |a Dormann, Dorothee
|0 P:(DE-2719)9000059
|b 23
|u dzne
700 1 _ |a Ninkovic, Jovica
|0 0000-0002-4381-0041
|b 24
773 _ _ |a 10.1038/s41593-022-01199-y
|g Vol. 25, no. 12, p. 1608 - 1625
|0 PERI:(DE-600)1494955-6
|n 12
|p 1608 - 1625
|t Nature neuroscience
|v 25
|y 2022
|x 1097-6256
856 4 _ |u https://pub.dzne.de/record/165614/files/DZNE-2022-01747_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/165614/files/DZNE-2022-01747_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:165614
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-2719)2812151
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)9000319
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)2241638
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 16
|6 P:(DE-2719)2812248
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 17
|6 P:(DE-2719)9000187
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 23
|6 P:(DE-2719)9000059
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT NEUROSCI : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-12
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b NAT NEUROSCI : 2021
|d 2022-11-12
920 1 _ |0 I:(DE-2719)1140002
|k AG Schmid München
|l Genetic Models of Neurodegeneration
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1140002
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21