000165620 001__ 165620
000165620 005__ 20240326115537.0
000165620 0247_ $$2pmc$$apmc:PMC9765394
000165620 0247_ $$2doi$$a10.1523/ENEURO.0369-22.2022
000165620 0247_ $$2pmid$$apmid:36446572
000165620 0247_ $$2altmetric$$aaltmetric:140461951
000165620 037__ $$aDZNE-2022-01753
000165620 041__ $$aEnglish
000165620 082__ $$a610
000165620 1001_ $$avan Casteren, Adriana C M$$b0
000165620 245__ $$aDifferential modes of action of α1- and α1γ2- autoantibodies derived from patients with GABAAR encephalitis.
000165620 260__ $$aWashington, DC$$bSoc.$$c2022
000165620 3367_ $$2DRIVER$$aarticle
000165620 3367_ $$2DataCite$$aOutput Types/Journal article
000165620 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1711446726_2079
000165620 3367_ $$2BibTeX$$aARTICLE
000165620 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000165620 3367_ $$00$$2EndNote$$aJournal Article
000165620 520__ $$aAutoantibodies against central nervous system proteins are increasingly being recognized in association with neurologic disorders. Although a growing number of neural autoantibodies have been identified, a causal link between specific autoantibodies and disease symptoms remains unclear, as most studies use patient-derived CSF-containing mixtures of autoantibodies. This raises questions concerning mechanism of action and which autoantibodies truly contribute to disease progression. To address this issue, monoclonal autoantibodies were isolated from a young girl with a range of neurologic symptoms, some of which reacted with specific GABAA receptor (GABAAR) subunits, α1-subunit and α1γ2-subunit, which in this study we have characterized in detail using a combination of cellular imaging and electrophysiological techniques. These studies in neurons from wild-type mice (C57BL/6J; RRID:IMSR_JAX:000664) of mixed-sex revealed that the α1 and α1γ2 subunit-specific antibodies have differential effects on the GABAA receptor. Namely, the α1-antibody was found to directly affect GABAA receptor function on a short time scale that diminished GABA currents, leading to increased network excitability. On longer time scales those antibodies also triggered a redistribution of the GABAA receptor away from synapses. In contrast, the α1γ2-antibody had no direct effect on GABAA receptor function and could possibly mediate its effect through other actors of the immune system. Taken together, these data highlight the complexity underlying autoimmune disorders and show that antibodies can exert their effect through many mechanisms within the same disease.
000165620 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000165620 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x1
000165620 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000165620 650_7 $$2NLM Chemicals$$aReceptors, GABA-A
000165620 650_7 $$2Other$$aGABAAR
000165620 650_7 $$2Other$$aautoantibodies
000165620 650_7 $$2Other$$aautoimmune encephalitis
000165620 650_7 $$2Other$$acortical/striatal neurons
000165620 650_7 $$2Other$$anetwork excitability
000165620 650_7 $$2NLM Chemicals$$aAutoantibodies
000165620 650_7 $$056-12-2$$2NLM Chemicals$$agamma-Aminobutyric Acid
000165620 650_2 $$2MeSH$$aAnimals
000165620 650_2 $$2MeSH$$aMice
000165620 650_2 $$2MeSH$$aReceptors, GABA-A: metabolism
000165620 650_2 $$2MeSH$$aAutoantibodies: metabolism
000165620 650_2 $$2MeSH$$aMice, Inbred C57BL
000165620 650_2 $$2MeSH$$aEncephalitis
000165620 650_2 $$2MeSH$$agamma-Aminobutyric Acid
000165620 7001_ $$0P:(DE-2719)2810967$$aAckermann, Frauke$$b1$$udzne
000165620 7001_ $$0P:(DE-2719)9002314$$aRahman, Kazi Atikur$$b2$$udzne
000165620 7001_ $$0P:(DE-2719)2811708$$aAndrzejak, Ewa$$b3$$udzne
000165620 7001_ $$00000-0002-3905-2444$$aRosenmund, Christian$$b4
000165620 7001_ $$0P:(DE-2719)2811468$$aKreye, Jakob$$b5$$udzne
000165620 7001_ $$0P:(DE-2719)2810931$$aPrüss, Harald$$b6$$udzne
000165620 7001_ $$0P:(DE-2719)2810922$$aGarner, Craig Curtis$$b7$$udzne
000165620 7001_ $$0P:(DE-2719)9000590$$aIchkova, Aleksandra$$b8$$eLast author$$udzne
000165620 773__ $$0PERI:(DE-600)2800598-3$$a10.1523/ENEURO.0369-22.2022$$gp. ENEURO.0369-22.2022 -$$n6$$pENEURO.0369-22.2022$$teNeuro$$v9$$x2373-2822$$y2022
000165620 8564_ $$uhttps://pub.dzne.de/record/165620/files/DZNE-2022-01753.pdf$$yOpenAccess
000165620 8564_ $$uhttps://pub.dzne.de/record/165620/files/DZNE-2022-01753.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000165620 909CO $$ooai:pub.dzne.de:165620$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000165620 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810967$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000165620 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9002314$$aExternal Institute$$b2$$kExtern
000165620 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811708$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000165620 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811468$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000165620 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810931$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000165620 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810922$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b7$$kDZNE
000165620 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000590$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000165620 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000165620 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x1
000165620 9141_ $$y2022
000165620 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-03-30
000165620 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-03-30
000165620 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-03-30
000165620 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-11
000165620 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000165620 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENEURO : 2021$$d2023-03-30
000165620 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-03-30
000165620 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2017-10-05T09:48:20Z
000165620 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-11
000165620 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2017-10-05T09:48:20Z
000165620 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-03-30
000165620 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-03-30
000165620 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-03-30
000165620 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000165620 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Double blind peer review$$d2017-10-05T09:48:20Z
000165620 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-11
000165620 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-11
000165620 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-11
000165620 9201_ $$0I:(DE-2719)1810001$$kAG Garner$$lSynaptopathy$$x0
000165620 9201_ $$0I:(DE-2719)1810003$$kAG Prüß$$lAutoimmune Encephalopathies$$x1
000165620 9201_ $$0I:(DE-2719)1813004$$kAG Ackermann$$lAstrocyte - Synapse Interactions$$x2
000165620 980__ $$ajournal
000165620 980__ $$aVDB
000165620 980__ $$aUNRESTRICTED
000165620 980__ $$aI:(DE-2719)1810001
000165620 980__ $$aI:(DE-2719)1810003
000165620 980__ $$aI:(DE-2719)1813004
000165620 9801_ $$aFullTexts