001     165620
005     20240326115537.0
024 7 _ |a pmc:PMC9765394
|2 pmc
024 7 _ |a 10.1523/ENEURO.0369-22.2022
|2 doi
024 7 _ |a pmid:36446572
|2 pmid
024 7 _ |a altmetric:140461951
|2 altmetric
037 _ _ |a DZNE-2022-01753
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a van Casteren, Adriana C M
|b 0
245 _ _ |a Differential modes of action of α1- and α1γ2- autoantibodies derived from patients with GABAAR encephalitis.
260 _ _ |a Washington, DC
|c 2022
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1711446726_2079
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Autoantibodies against central nervous system proteins are increasingly being recognized in association with neurologic disorders. Although a growing number of neural autoantibodies have been identified, a causal link between specific autoantibodies and disease symptoms remains unclear, as most studies use patient-derived CSF-containing mixtures of autoantibodies. This raises questions concerning mechanism of action and which autoantibodies truly contribute to disease progression. To address this issue, monoclonal autoantibodies were isolated from a young girl with a range of neurologic symptoms, some of which reacted with specific GABAA receptor (GABAAR) subunits, α1-subunit and α1γ2-subunit, which in this study we have characterized in detail using a combination of cellular imaging and electrophysiological techniques. These studies in neurons from wild-type mice (C57BL/6J; RRID:IMSR_JAX:000664) of mixed-sex revealed that the α1 and α1γ2 subunit-specific antibodies have differential effects on the GABAA receptor. Namely, the α1-antibody was found to directly affect GABAA receptor function on a short time scale that diminished GABA currents, leading to increased network excitability. On longer time scales those antibodies also triggered a redistribution of the GABAA receptor away from synapses. In contrast, the α1γ2-antibody had no direct effect on GABAA receptor function and could possibly mediate its effect through other actors of the immune system. Taken together, these data highlight the complexity underlying autoimmune disorders and show that antibodies can exert their effect through many mechanisms within the same disease.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Receptors, GABA-A
|2 NLM Chemicals
650 _ 7 |a GABAAR
|2 Other
650 _ 7 |a autoantibodies
|2 Other
650 _ 7 |a autoimmune encephalitis
|2 Other
650 _ 7 |a cortical/striatal neurons
|2 Other
650 _ 7 |a network excitability
|2 Other
650 _ 7 |a Autoantibodies
|2 NLM Chemicals
650 _ 7 |a gamma-Aminobutyric Acid
|0 56-12-2
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Receptors, GABA-A: metabolism
|2 MeSH
650 _ 2 |a Autoantibodies: metabolism
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Encephalitis
|2 MeSH
650 _ 2 |a gamma-Aminobutyric Acid
|2 MeSH
700 1 _ |a Ackermann, Frauke
|0 P:(DE-2719)2810967
|b 1
|u dzne
700 1 _ |a Rahman, Kazi Atikur
|0 P:(DE-2719)9002314
|b 2
|u dzne
700 1 _ |a Andrzejak, Ewa
|0 P:(DE-2719)2811708
|b 3
|u dzne
700 1 _ |a Rosenmund, Christian
|0 0000-0002-3905-2444
|b 4
700 1 _ |a Kreye, Jakob
|0 P:(DE-2719)2811468
|b 5
|u dzne
700 1 _ |a Prüss, Harald
|0 P:(DE-2719)2810931
|b 6
|u dzne
700 1 _ |a Garner, Craig Curtis
|0 P:(DE-2719)2810922
|b 7
|u dzne
700 1 _ |a Ichkova, Aleksandra
|0 P:(DE-2719)9000590
|b 8
|e Last author
|u dzne
773 _ _ |a 10.1523/ENEURO.0369-22.2022
|g p. ENEURO.0369-22.2022 -
|0 PERI:(DE-600)2800598-3
|n 6
|p ENEURO.0369-22.2022
|t eNeuro
|v 9
|y 2022
|x 2373-2822
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/165620/files/DZNE-2022-01753.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/165620/files/DZNE-2022-01753.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:165620
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2810967
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-2719)9002314
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2811708
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2811468
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2810931
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2810922
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)9000590
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 1
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-11
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENEURO : 2021
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2017-10-05T09:48:20Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2017-10-05T09:48:20Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-03-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-03-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Double blind peer review
|d 2017-10-05T09:48:20Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-11
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-11
920 1 _ |0 I:(DE-2719)1810001
|k AG Garner
|l Synaptopathy
|x 0
920 1 _ |0 I:(DE-2719)1810003
|k AG Prüß
|l Autoimmune Encephalopathies
|x 1
920 1 _ |0 I:(DE-2719)1813004
|k AG Ackermann
|l Astrocyte - Synapse Interactions
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1810001
980 _ _ |a I:(DE-2719)1810003
980 _ _ |a I:(DE-2719)1813004
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21