000169074 001__ 169074
000169074 005__ 20240610143728.0
000169074 0247_ $$2doi$$a10.5061/DRYAD.BK3J9KDD1
000169074 0247_ $$2doi$$a10.5061/dryad.bk3j9kdd1
000169074 037__ $$aDZNE-2022-01781
000169074 041__ $$aEnglish
000169074 1001_ $$0P:(DE-2719)2810271$$aTavosanis, Gaia$$b0$$udzne
000169074 245__ $$aDataset: APL synapses distribution on PN and KC meshes, primary data, calcium imaging macros and python scripts from Prisco et al.
000169074 260__ $$bDryad$$c2021
000169074 3367_ $$2BibTeX$$aMISC
000169074 3367_ $$0PUB:(DE-HGF)32$$2PUB:(DE-HGF)$$aDataset$$bdataset$$mdataset$$s1718023036_5321
000169074 3367_ $$026$$2EndNote$$aChart or Table
000169074 3367_ $$2DataCite$$aDataset
000169074 3367_ $$2ORCID$$aDATA_SET
000169074 3367_ $$2DINI$$aResearchData
000169074 520__ $$aTo identify and memorize discrete but similar environmental inputs, the brain needs to distinguish between subtle differences of activity patterns in defined neuronal populations. The Kenyon cells of the Drosophila adult mushroom body (MB) respond sparsely to complex olfactory input, a property that is thought to support stimuli discrimination in the MB. To understand how this property emerges, we investigated the role of the inhibitory anterior paired lateral neuron (APL) in the input circuit of the MB, the calyx. Within the calyx, presynaptic boutons of projection neurons (PNs) form large synaptic microglomeruli (MGs) with dendrites of postsynaptic Kenyon cells (KCs). Combining EM data analysis and in vivo calcium imaging, we show that APL, via inhibitory and reciprocal synapses targeting both PN boutons and KC dendrites, normalizes odour-evoked representations in MGs of the calyx. APL response scales with the PN input strength and is regionalized around PN input distribution. Our data indicate that the formation of a sparse code by the Kenyon cells requires APL-driven normalization of their MG postsynaptic responses. This work provides experimental insights on how inhibition shapes sensory information representation in a higher brain centre, thereby supporting stimuli discrimination and allowing for efficient associative memory formation.
000169074 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000169074 588__ $$aDataset connected to DataCite
000169074 7001_ $$0P:(DE-2719)2812229$$aPrisco, Luigi$$b1$$eLast author$$udzne
000169074 773__ $$a10.5061/dryad.bk3j9kdd1
000169074 909CO $$ooai:pub.dzne.de:169074$$pVDB
000169074 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)2810271$$aExternal Institute$$b0$$kExtern
000169074 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812229$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000169074 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000169074 9141_ $$y2021
000169074 9201_ $$0I:(DE-2719)1013018$$kAG Tavosanis$$lDynamics of neuronal circuits$$x0
000169074 980__ $$adataset
000169074 980__ $$aVDB
000169074 980__ $$aI:(DE-2719)1013018
000169074 980__ $$aUNRESTRICTED