000169097 001__ 169097
000169097 005__ 20250819164438.0
000169097 0247_ $$2doi$$a10.5281/ZENODO.7331723
000169097 0247_ $$2altmetric$$aaltmetric:128354507
000169097 0247_ $$2doi$$a10.5281/zenodo.7331723
000169097 037__ $$aDZNE-2022-01804
000169097 041__ $$aEnglish
000169097 1001_ $$00000-0002-7240-5926$$aKnab, Felix$$b0
000169097 245__ $$aDataset: Open data repository, Knab et al., Prediction of stroke outcome in mice based on non-invasive MRI and behavioral testing, v3.1
000169097 260__ $$bZenodo$$c2022
000169097 3367_ $$2BibTeX$$aMISC
000169097 3367_ $$0PUB:(DE-HGF)32$$2PUB:(DE-HGF)$$aDataset$$bdataset$$mdataset$$s1755614664_30565
000169097 3367_ $$026$$2EndNote$$aChart or Table
000169097 3367_ $$2DataCite$$aDataset
000169097 3367_ $$2ORCID$$aDATA_SET
000169097 3367_ $$2DINI$$aResearchData
000169097 520__ $$aOpen data repository, Knab et al., Prediction of stroke outcome in mice based on non-invasive MRI and behavioral testing Latest version of files: repository_v2.0.zip and Behavior Data_v2.0.xlsx, please ignore repository.zip Open data repository Knab et al. Prediction of stroke outcome in mice based on non-invasvive MRI and behavioral testing Content: README.txt This information dat Contains MRI data in NIFTI format and secondary data from atlas registration. For documentation of atlas registration files see https://pubmed.ncbi.nlm.nih.gov/28829217/ Files used for the manuscript: t2.nii: t2 weighted image acquired 24 h post stroke masklesion.nii: manually delineated lesion x_masklesion.nii: lesion in atlas space ix_ANO.nii: Allen brain atlas in native space (i.e. matching t2.nii) Lesion volume was calculated by volume of voxels unequal 0 in x_masklesion.nii Overlap of regions defined by ix_ANO.nii with masklesion.nii were used for calculating percent damage in each atlas region prediction_models Contains separated training and test data as xlsx and csv files with lesion volumes in cubic mm of the Allen brain atlas space, percent damage per atlas region and behavioral data. The training data was used as input for training prediction models in MATLAB, the results were created using the test data. The files have following sturcture: Column 1: animal ID Columns 2-537: MRI regions (column title corresponds to the region number as used in the Allen common coordinate framework) Column 538: lesion volume Column 539: initial performance (subacute deficit) = mean performance/deficit on days 2-6 Column 540: mean performance/deficit on days 2-6 = initial performance (subacute deficit) - this column equals column 539 but has different header which was used to train the residual from initial deficit Column 541: residual performance/deficit Column 542: test or training group Consecutive rows contain data for each animal specified by the animal id The repository also contains all trained models, prediction results for the test data and tables with resulting median absolute error (MedAE) and 5th, 25th, 75th and 95 absolute error quantiles for each model. The model files end with '_models.mat' and contain 50 independently trained models each. Each model version is specified by number 1-50. The result files end with '_test_results.mat' or '_test_results.xlsx', files with MedAE and quantiles end with '_test_errors.xlsx' or '_test_errors.csv. The common part of filenames specifies the used paradigm Folder 'subacute deficit prediction' contains: - initial_performance_from_lesion_volume: prediction of subacute deficit using lesion volume - initial_performance_from_segmented_mri: prediction of subacute deficit using segmented mri Folder 'long-term outcome prediction' contains: - lesion_volume: prediction of residual deficit using lesion volume - segmented_mri: prediction of residual deficit using segmented_mri - initial_performance: prediction of residual deficit using subacute deficit Folder 'mri_inc_oob_imp' contains models trained using increasing number of mri segments sorted according to the out-of-bag importance. The number of used segments is given in the file name. The models, results and errors are separated in subfolders. Files with equal file name and different extension always contain the same data templates Allen atlas, template, brain mask, hemisphere masks, tissue probability masks in NIFTI format including annotations of region IDs and parameter.m file for use in MATLAB toolbox ANTx2
000169097 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000169097 588__ $$aDataset connected to DataCite
000169097 650_7 $$2Other$$astroke
000169097 650_7 $$2Other$$amice
000169097 650_7 $$2Other$$aoutcome prediction
000169097 650_7 $$2Other$$amotor-function
000169097 650_7 $$2Other$$astaircase
000169097 7001_ $$00000-0001-6606-6369$$aKoch, Stefan Paul$$b1
000169097 7001_ $$00000-0003-0970-1308$$aMajor, Sebastian$$b2
000169097 7001_ $$00000-0002-6781-5226$$aFarr, Tracy D.$$b3
000169097 7001_ $$00000-0002-5053-2211$$aMueller, Susanne$$b4
000169097 7001_ $$aEuskirchen, Philipp$$b5
000169097 7001_ $$aEggers, Moritz$$b6
000169097 7001_ $$aKuffner, Melanie T. C.$$b7
000169097 7001_ $$aWalter, Josefine$$b8
000169097 7001_ $$00000-0001-7459-2828$$aDreier, Jens P.$$b9
000169097 7001_ $$0P:(DE-2719)2811033$$aEndres, Matthias$$b10$$udzne
000169097 7001_ $$0P:(DE-2719)2810838$$aDirnagl, Ulrich$$b11$$udzne
000169097 7001_ $$00000-0002-0965-7530$$aWenger, Nikolaus$$b12
000169097 7001_ $$0P:(DE-2719)9000582$$aHoffmann, Christian$$b13$$udzne
000169097 7001_ $$00000-0001-8777-4823$$aBoehm-Sturm, Philipp$$b14
000169097 7001_ $$00000-0002-2063-2860$$aHarms, Christoph$$b15
000169097 773__ $$a10.5281/zenodo.7331723
000169097 909CO $$ooai:pub.dzne.de:169097$$pVDB
000169097 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811033$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b10$$kDZNE
000169097 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810838$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b11$$kDZNE
000169097 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9000582$$aExternal Institute$$b13$$kExtern
000169097 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000169097 9141_ $$y2022
000169097 9201_ $$0I:(DE-2719)1811005$$kAG Endres$$lInterdisciplinary Dementia Research$$x0
000169097 9201_ $$0I:(DE-2719)1810002$$kAG Dirnagl$$lVascular Pathology$$x1
000169097 980__ $$adataset
000169097 980__ $$aVDB
000169097 980__ $$aI:(DE-2719)1811005
000169097 980__ $$aI:(DE-2719)1810002
000169097 980__ $$aUNRESTRICTED