000169133 001__ 169133 000169133 005__ 20240311115323.0 000169133 0247_ $$2pmc$$apmc:PMC9794777 000169133 0247_ $$2doi$$a10.1038/s12276-022-00895-w 000169133 0247_ $$2pmid$$apmid:36473937 000169133 0247_ $$2ISSN$$a0378-8512 000169133 0247_ $$2ISSN$$a1226-3613 000169133 0247_ $$2ISSN$$a2092-6413 000169133 0247_ $$2altmetric$$aaltmetric:139774624 000169133 037__ $$aDZNE-2023-00012 000169133 041__ $$aEnglish 000169133 082__ $$a540 000169133 1001_ $$aKim, Tae-Kyung$$b0 000169133 245__ $$aInflammation promotes synucleinopathy propagation. 000169133 260__ $$aSeoul$$bSoc.$$c2022 000169133 3367_ $$2DRIVER$$aarticle 000169133 3367_ $$2DataCite$$aOutput Types/Journal article 000169133 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1672829002_30811 000169133 3367_ $$2BibTeX$$aARTICLE 000169133 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000169133 3367_ $$00$$2EndNote$$aJournal Article 000169133 500__ $$aISSN 2092-6413 not unique: **2 hits**. 000169133 520__ $$aThe clinical progression of neurodegenerative diseases correlates with the spread of proteinopathy in the brain. The current understanding of the mechanism of proteinopathy spread is far from complete. Here, we propose that inflammation is fundamental to proteinopathy spread. A sequence variant of α-synuclein (V40G) was much less capable of fibril formation than wild-type α-synuclein (WT-syn) and, when mixed with WT-syn, interfered with its fibrillation. However, when V40G was injected intracerebrally into mice, it induced aggregate spreading even more effectively than WT-syn. Aggregate spreading was preceded by sustained microgliosis and inflammatory responses, which were more robust with V40G than with WT-syn. Oral administration of an anti-inflammatory agent suppressed aggregate spreading, inflammation, and behavioral deficits in mice. Furthermore, exposure of cells to inflammatory cytokines increased the cell-to-cell propagation of α-synuclein. These results suggest that the inflammatory microenvironment is the major driver of the spread of synucleinopathy in the brain. 000169133 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0 000169133 542__ $$2Crossref$$i2022-12-06$$uhttps://creativecommons.org/licenses/by/4.0 000169133 542__ $$2Crossref$$i2022-12-06$$uhttps://creativecommons.org/licenses/by/4.0 000169133 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de 000169133 650_7 $$2NLM Chemicals$$aalpha-Synuclein 000169133 650_2 $$2MeSH$$aMice 000169133 650_2 $$2MeSH$$aAnimals 000169133 650_2 $$2MeSH$$aalpha-Synuclein: genetics 000169133 650_2 $$2MeSH$$aalpha-Synuclein: metabolism 000169133 650_2 $$2MeSH$$aSynucleinopathies 000169133 650_2 $$2MeSH$$aBrain: metabolism 000169133 650_2 $$2MeSH$$aNeurodegenerative Diseases 000169133 650_2 $$2MeSH$$aInflammation 000169133 650_2 $$2MeSH$$aDisease Models, Animal 000169133 7001_ $$0P:(DE-2719)9000874$$aBae, Eun-Jin$$b1 000169133 7001_ $$aJung, Byung Chul$$b2 000169133 7001_ $$aChoi, Minsun$$b3 000169133 7001_ $$aShin, Soo Jean$$b4 000169133 7001_ $$aPark, Sung Jun$$b5 000169133 7001_ $$aKim, Jeong Tae$$b6 000169133 7001_ $$aJung, Min Kyo$$b7 000169133 7001_ $$0P:(DE-2719)2772760$$aUlusoy, Ayse$$b8 000169133 7001_ $$aSong, Mi-Young$$b9 000169133 7001_ $$aLee, Jun Sung$$b10 000169133 7001_ $$aLee, He-Jin$$b11 000169133 7001_ $$0P:(DE-2719)2481741$$aDi Monte, Donato A$$b12 000169133 7001_ $$0P:(DE-HGF)0$$aLee, Seung-Jae$$b13$$eCorresponding author 000169133 77318 $$2Crossref$$3journal-article$$a10.1038/s12276-022-00895-w$$bSpringer Science and Business Media LLC$$d2022-12-06$$n12$$p2148-2161$$tExperimental & Molecular Medicine$$v54$$x2092-6413$$y2022 000169133 773__ $$0PERI:(DE-600)2084833-X$$a10.1038/s12276-022-00895-w$$gVol. 54, no. 12, p. 2148 - 2161$$n12$$p2148-2161$$tExperimental & molecular medicine$$v54$$x2092-6413$$y2022 000169133 8564_ $$uhttps://pub.dzne.de/record/169133/files/DZNE-2023-00012.pdf$$yOpenAccess 000169133 8564_ $$uhttps://pub.dzne.de/record/169133/files/DZNE-2023-00012.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000169133 909CO $$ooai:pub.dzne.de:169133$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000169133 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9000874$$aExternal Institute$$b1$$kExtern 000169133 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2772760$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE 000169133 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2481741$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b12$$kDZNE 000169133 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0 000169133 9141_ $$y2022 000169133 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-08 000169133 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-08 000169133 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-08 000169133 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000169133 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEXP MOL MED : 2021$$d2022-11-08 000169133 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-10-15T19:39:04Z 000169133 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-10-15T19:39:04Z 000169133 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bEXP MOL MED : 2021$$d2022-11-08 000169133 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000169133 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-10-15T19:39:04Z 000169133 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-08 000169133 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-08 000169133 9201_ $$0I:(DE-2719)1013008$$kAG Di Monte$$lNeurodegeneration and Neuroprotection in Parkinson´s Disease$$x0 000169133 980__ $$ajournal 000169133 980__ $$aVDB 000169133 980__ $$aUNRESTRICTED 000169133 980__ $$aI:(DE-2719)1013008 000169133 9801_ $$aFullTexts 000169133 999C5 $$1P Brundin$$2Crossref$$9-- missing cx lookup --$$a10.1038/nrm2873$$p301 -$$tNat. Rev. Mol. Cell Biol.$$uBrundin, P., Melki, R. & Kopito, R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat. Rev. Mol. Cell Biol. 11, 301–307 (2010).$$v11$$y2010 000169133 999C5 $$1M Jucker$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41593-018-0238-6$$p1341 -$$tNat. Neurosci.$$uJucker, M. & Walker, L. C. Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat. Neurosci. 21, 1341–1349 (2018).$$v21$$y2018 000169133 999C5 $$1A Raj$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuron.2011.12.040$$p1204 -$$tNeuron$$uRaj, A., Kuceyeski, A. & Weiner, M. A network diffusion model of disease progression in dementia. Neuron 73, 1204–1215 (2012).$$v73$$y2012 000169133 999C5 $$1J Zhou$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuron.2012.03.004$$p1216 -$$tNeuron$$uZhou, J., Gennatas, E. D., Kramer, J. H., Miller, B. L. & Seeley, W. W. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 73, 1216–1227 (2012).$$v73$$y2012 000169133 999C5 $$1A de Calignon$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuron.2011.11.033$$p685 -$$tNeuron$$ude Calignon, A. et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73, 685–697 (2012).$$v73$$y2012 000169133 999C5 $$1L Liu$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0031302$$pe31302 -$$tPLoS One$$uLiu, L. et al. Trans-synaptic spread of tau pathology in vivo. PLoS One 7, e31302 (2012).$$v7$$y2012 000169133 999C5 $$1KC Luk$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1227157$$p949 -$$tScience$$uLuk, K. C. et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).$$v338$$y2012 000169133 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-biochem-061516-045049$$uVaquer-Alicea, J. & Diamond, M. I. Propagation of Protein Aggregation in Neurodegenerative Diseases. Annu. Rev. Biochem. https://doi.org/10.1146/annurev-biochem-061516-045049 (2019). 000169133 999C5 $$1AN Sacino$$2Crossref$$9-- missing cx lookup --$$a10.1186/2051-5960-1-38$$p38 -$$tActa Neuropathol. Commun.$$uSacino, A. N. et al. Induction of CNS alpha-synuclein pathology by fibrillar and non-amyloidogenic recombinant alpha-synuclein. Acta Neuropathol. Commun. 1, 38 (2013).$$v1$$y2013 000169133 999C5 $$1AN Sacino$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1321785111$$p10732 -$$tProc. Natl Acad. Sci. USA.$$uSacino, A. N. et al. Intramuscular injection of alpha-synuclein induces CNS alpha-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc. Natl Acad. Sci. USA. 111, 10732–10737 (2014).$$v111$$y2014 000169133 999C5 $$1AN Sacino$$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.2102-14.2014$$p12368 -$$tJ. Neurosci.$$uSacino, A. N. et al. Brain injection of alpha-synuclein induces multiple proteinopathies, gliosis, and a neuronal injury marker. J. Neurosci. 34, 12368–12378 (2014).$$v34$$y2014 000169133 999C5 $$1BC Jung$$2Crossref$$9-- missing cx lookup --$$a10.1038/emm.2017.1$$tExp. Mol. Med.$$uJung, B. C. et al. Amplification of distinct alpha-synuclein fibril conformers through protein misfolding cyclic amplification. Exp. Mol. Med. 49, e314 (2017).$$v49$$y2017 000169133 999C5 $$1HJ Lee$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M105326200$$p5411 -$$tJ. Biol. Chem.$$uLee, H. J., Shin, S. Y., Choi, C., Lee, Y. H. & Lee, S. J. Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors. J. Biol. Chem. 277, 5411–5417 (2002).$$v277$$y2002 000169133 999C5 $$1E Rockenstein$$2Crossref$$9-- missing cx lookup --$$a10.1002/jnr.10231$$p568 -$$tJ. Neurosci. Res.$$uRockenstein, E. et al. Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J. Neurosci. Res. 68, 568–578 (2002).$$v68$$y2002 000169133 999C5 $$1V Krishnan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.biopsych.2008.03.026$$p336 -$$tBiol. Psychiat.$$uKrishnan, V. et al. Calcium-sensitive adenylyl cyclases in depression and anxiety: behavioral and biochemical consequences of isoform targeting. Biol. Psychiat. 64, 336–343 (2008).$$v64$$y2008 000169133 999C5 $$1A Wolf$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0147733$$pe0147733 -$$tPLoS One$$uWolf, A., Bauer, B., Abner, E. L., Ashkenazy-Frolinger, T. & Hartz, A. M. A Comprehensive Behavioral Test Battery to Assess Learning and Memory in 129S6/Tg2576 Mice. PLoS One 11, e0147733 (2016).$$v11$$y2016 000169133 999C5 $$1KK Hsiao$$2Crossref$$9-- missing cx lookup --$$a10.1016/0896-6273(95)90107-8$$p1203 -$$tNeuron$$uHsiao, K. K. et al. Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron 15, 1203–1218 (1995).$$v15$$y1995 000169133 999C5 $$1TK Kim$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12035-015-9160-z$$p2843 -$$tMol. Neurobiol.$$uKim, T. K. et al. G9a-Mediated Regulation of OXT and AVP Expression in the Basolateral Amygdala Mediates Stress-Induced Lasting Behavioral Depression and Its Reversal by Exercise. Mol. Neurobiol. 53, 2843–2856 (2016).$$v53$$y2016 000169133 999C5 $$1A Ulusoy$$2Crossref$$9-- missing cx lookup --$$a10.1002/emmm.201302475$$p1119 -$$tEMBO Mol. Med.$$uUlusoy, A. et al. Caudo-rostral brain spreading of alpha-synuclein through vagal connections. EMBO Mol. Med. 5, 1119–1127 (2013).$$v5$$y2013 000169133 999C5 $$1HJ Gundersen$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1365-2818.1987.tb02837.x$$p229 -$$tJ. Microsc$$uGundersen, H. J. & Jensen, E. B. The efficiency of systematic sampling in stereology and its prediction. J. Microsc 147, 229–263 (1987).$$v147$$y1987 000169133 999C5 $$1MI Love$$2Crossref$$9-- missing cx lookup --$$a10.1186/s13059-014-0550-8$$tGenome Biol.$$uLove, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).$$v15$$y2014 000169133 999C5 $$1G Bindea$$2Crossref$$9-- missing cx lookup --$$a10.1093/bioinformatics/btp101$$p1091 -$$tBioinformatics$$uBindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093 (2009).$$v25$$y2009 000169133 999C5 $$1W Huang da$$2Crossref$$9-- missing cx lookup --$$a10.1038/nprot.2008.211$$p44 -$$tNat. Protoc.$$uHuang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).$$v4$$y2009 000169133 999C5 $$1HJ Lee$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bbrc.2008.05.045$$p423 -$$tBiochem. Biophys. Res. Commun.$$uLee, H. J., Suk, J. E., Bae, E. J. & Lee, S. J. Clearance and deposition of extracellular alpha-synuclein aggregates in microglia. Biochem. Biophys. Res. Commun. 372, 423–428 (2008).$$v372$$y2008 000169133 999C5 $$1EJ Bae$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-018-05958-z$$tNat. Commun.$$uBae, E. J. et al. LRRK2 kinase regulates alpha-synuclein propagation via RAB35 phosphorylation. Nat. Commun. 9, 3465 (2018).$$v9$$y2018 000169133 999C5 $$1EJ Bae$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms5755$$tNat. Commun.$$uBae, E. J. et al. Glucocerebrosidase depletion enhances cell-to-cell transmission of alpha-synuclein. Nat. Commun. 5, 4755 (2014).$$v5$$y2014 000169133 999C5 $$1F De Giorgi$$2Crossref$$9-- missing cx lookup --$$a10.1126/sciadv.abc4364$$peabc4364 -$$tSci. Adv.$$uDe Giorgi, F. et al. Novel self-replicating alpha-synuclein polymorphs that escape ThT monitoring can spontaneously emerge and acutely spread in neurons. Sci. Adv. 6, eabc4364 (2020).$$v6$$y2020 000169133 999C5 $$1D Yanagisawa$$2Crossref$$9-- missing cx lookup --$$a10.3233/JAD-2011-102100$$p33 -$$tJ. Alzheimers Dis.$$uYanagisawa, D. et al. Curcuminoid binds to amyloid-beta1-42 oligomer and fibril. J. Alzheimers Dis. 24(Suppl 2), 33–42 (2011).$$v24$$y2011 000169133 999C5 $$1HM Gao$$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.0143-07.2008$$p7687 -$$tJ. Neurosci.$$uGao, H. M. et al. Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J. Neurosci. 28, 7687–7698 (2008).$$v28$$y2008 000169133 999C5 $$1C Kim$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms2534$$tNat. Commun.$$uKim, C. et al. Neuron-released oligomeric alpha-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat. Commun. 4, 1562 (2013).$$v4$$y2013 000169133 999C5 $$1CW Olanow$$2Crossref$$9-- missing cx lookup --$$a10.1093/brain/awz104$$p1690 -$$tBrain$$uOlanow, C. W., Savolainen, M., Chu, Y., Halliday, G. M. & Kordower, J. H. Temporal evolution of microglia and alpha-synuclein accumulation following foetal grafting in Parkinson’s disease. Brain 142, 1690–1700 (2019).$$v142$$y2019 000169133 999C5 $$1C Ising$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-019-1769-z$$p669 -$$tNature$$uIsing, C. et al. NLRP3 inflammasome activation drives tau pathology. Nature 575, 669–673 (2019).$$v575$$y2019 000169133 999C5 $$1HM Gao$$2Crossref$$9-- missing cx lookup --$$a10.1289/ehp.1003013$$p807 -$$tEnviron. Health Persp.$$uGao, H. M. et al. Neuroinflammation and alpha-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson’s disease. Environ. Health Persp. 119, 807–814 (2011).$$v119$$y2011 000169133 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/scitranslmed.aah4066$$uGordon, R. et al. Inflammasome inhibition prevents alpha-synuclein pathology and dopaminergic neurodegeneration in mice. Sci. Transl. Med. 10, eaah4066, (2018). 000169133 999C5 $$1CS Lindestam Arlehamn$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-020-15626-w$$tNat. Commun.$$uLindestam Arlehamn, C. S. et al. alpha-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson’s disease. Nat. Commun. 11, 1875 (2020).$$v11$$y2020 000169133 999C5 $$1I Choi$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-020-15119-w$$tNat. Commun.$$uChoi, I. et al. Microglia clear neuron-released α-synuclein via selective autophagy and prevent neurodegeneration. Nat. Commun. 11, 1386 (2020).$$v11$$y2020 000169133 999C5 $$1RH Earls$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1909110117$$p1762 -$$tProc. Natl Acad. Sci. USA.$$uEarls, R. H. et al. NK cells clear α-synuclein and the depletion of NK cells exacerbates synuclein pathology in a mouse model of α-synucleinopathy. Proc. Natl Acad. Sci. USA. 117, 1762–1771 (2020).$$v117$$y2020 000169133 999C5 $$1S George$$2Crossref$$9-- missing cx lookup --$$a10.3233/JPD-202351$$p585 -$$tJ. Parkinsons. Dis.$$uGeorge, S. et al. T Cells Limit Accumulation of Aggregate Pathology Following Intrastriatal Injection of α-Synuclein Fibrils. J. Parkinsons. Dis. 11, 585–603 (2021).$$v11$$y2021 000169133 999C5 $$1A Grubman$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41593-019-0539-4$$p2087 -$$tNat. Neurosci.$$uGrubman, A. et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nat. Neurosci. 22, 2087–2097 (2019).$$v22$$y2019 000169133 999C5 $$1N Habib$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41593-020-0624-8$$p701 -$$tNat. Neurosci.$$uHabib, N. et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 23, 701–706 (2020).$$v23$$y2020 000169133 999C5 $$1H Keren-Shaul$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cell.2017.05.018$$p1276 -$$tCell$$uKeren-Shaul, H. et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell 169, 1276–1290 e1217 (2017).$$v169$$y2017 000169133 999C5 $$1K Srinivasan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.celrep.2020.107843$$p107843 -$$tCell Rep.$$uSrinivasan, K. et al. Alzheimer’s Patient Microglia Exhibit Enhanced Aging and Unique Transcriptional Activation. Cell Rep. 31, 107843 (2020).$$v31$$y2020 000169133 999C5 $$1EJ Bae$$2Crossref$$9-- missing cx lookup --$$a10.1038/s12276-022-00789-x$$p788 -$$tExp. Mol. Med.$$uBae, E. J. et al. TNF-alpha promotes alpha-synuclein propagation through stimulation of senescence-associated lysosomal exocytosis. Exp. Mol. Med. 54, 788–800 (2022).$$v54$$y2022 000169133 999C5 $$1J Ueda$$2Crossref$$9-- missing cx lookup --$$a10.1002/mds.28558$$p1554 -$$tMov. Disord.$$uUeda, J. et al. Perampanel Inhibits alpha-Synuclein Transmission in Parkinson’s Disease Models. Mov. Disord. 36, 1554–1564 (2021).$$v36$$y2021 000169133 999C5 $$1Q Wu$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00401-020-02227-6$$p831 -$$tActa Neuropathol.$$uWu, Q. et al. Neuronal activity modulates alpha-synuclein aggregation and spreading in organotypic brain slice cultures and in vivo. Acta Neuropathol. 140, 831–849 (2020).$$v140$$y2020 000169133 999C5 $$1S Paillusson$$2Crossref$$9-- missing cx lookup --$$a10.1111/jnc.12131$$p512 -$$tJ. Neurochem.$$uPaillusson, S., Clairembault, T., Biraud, M., Neunlist, M. & Derkinderen, P. Activity-dependent secretion of alpha-synuclein by enteric neurons. J. Neurochem. 125, 512–517 (2013).$$v125$$y2013 000169133 999C5 $$1K Yamada$$2Crossref$$9-- missing cx lookup --$$a10.1186/s13024-018-0241-0$$p9 -$$tMol. Neurodegener.$$uYamada, K. & Iwatsubo, T. Extracellular alpha-synuclein levels are regulated by neuronal activity. Mol. Neurodegener. 13, 9 (2018).$$v13$$y2018 000169133 999C5 $$1JT Jarrett$$2Crossref$$9-- missing cx lookup --$$a10.1016/0092-8674(93)90635-4$$p1055 -$$tCell$$uJarrett, J. T. & Lansbury, P. T. Jr. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73, 1055–1058 (1993).$$v73$$y1993