001     169133
005     20240311115323.0
024 7 _ |a pmc:PMC9794777
|2 pmc
024 7 _ |a 10.1038/s12276-022-00895-w
|2 doi
024 7 _ |a pmid:36473937
|2 pmid
024 7 _ |a 0378-8512
|2 ISSN
024 7 _ |a 1226-3613
|2 ISSN
024 7 _ |a 2092-6413
|2 ISSN
024 7 _ |a altmetric:139774624
|2 altmetric
037 _ _ |a DZNE-2023-00012
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Kim, Tae-Kyung
|b 0
245 _ _ |a Inflammation promotes synucleinopathy propagation.
260 _ _ |a Seoul
|c 2022
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1672829002_30811
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a ISSN 2092-6413 not unique: **2 hits**.
520 _ _ |a The clinical progression of neurodegenerative diseases correlates with the spread of proteinopathy in the brain. The current understanding of the mechanism of proteinopathy spread is far from complete. Here, we propose that inflammation is fundamental to proteinopathy spread. A sequence variant of α-synuclein (V40G) was much less capable of fibril formation than wild-type α-synuclein (WT-syn) and, when mixed with WT-syn, interfered with its fibrillation. However, when V40G was injected intracerebrally into mice, it induced aggregate spreading even more effectively than WT-syn. Aggregate spreading was preceded by sustained microgliosis and inflammatory responses, which were more robust with V40G than with WT-syn. Oral administration of an anti-inflammatory agent suppressed aggregate spreading, inflammation, and behavioral deficits in mice. Furthermore, exposure of cells to inflammatory cytokines increased the cell-to-cell propagation of α-synuclein. These results suggest that the inflammatory microenvironment is the major driver of the spread of synucleinopathy in the brain.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
542 _ _ |i 2022-12-06
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2022-12-06
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a alpha-Synuclein
|2 NLM Chemicals
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a alpha-Synuclein: genetics
|2 MeSH
650 _ 2 |a alpha-Synuclein: metabolism
|2 MeSH
650 _ 2 |a Synucleinopathies
|2 MeSH
650 _ 2 |a Brain: metabolism
|2 MeSH
650 _ 2 |a Neurodegenerative Diseases
|2 MeSH
650 _ 2 |a Inflammation
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
700 1 _ |a Bae, Eun-Jin
|0 P:(DE-2719)9000874
|b 1
700 1 _ |a Jung, Byung Chul
|b 2
700 1 _ |a Choi, Minsun
|b 3
700 1 _ |a Shin, Soo Jean
|b 4
700 1 _ |a Park, Sung Jun
|b 5
700 1 _ |a Kim, Jeong Tae
|b 6
700 1 _ |a Jung, Min Kyo
|b 7
700 1 _ |a Ulusoy, Ayse
|0 P:(DE-2719)2772760
|b 8
700 1 _ |a Song, Mi-Young
|b 9
700 1 _ |a Lee, Jun Sung
|b 10
700 1 _ |a Lee, He-Jin
|b 11
700 1 _ |a Di Monte, Donato A
|0 P:(DE-2719)2481741
|b 12
700 1 _ |a Lee, Seung-Jae
|0 P:(DE-HGF)0
|b 13
|e Corresponding author
773 1 8 |a 10.1038/s12276-022-00895-w
|b Springer Science and Business Media LLC
|d 2022-12-06
|n 12
|p 2148-2161
|3 journal-article
|2 Crossref
|t Experimental & Molecular Medicine
|v 54
|y 2022
|x 2092-6413
773 _ _ |a 10.1038/s12276-022-00895-w
|g Vol. 54, no. 12, p. 2148 - 2161
|0 PERI:(DE-600)2084833-X
|n 12
|p 2148-2161
|t Experimental & molecular medicine
|v 54
|y 2022
|x 2092-6413
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/169133/files/DZNE-2023-00012.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/169133/files/DZNE-2023-00012.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:169133
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-2719)9000874
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2772760
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 12
|6 P:(DE-2719)2481741
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-08
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EXP MOL MED : 2021
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-10-15T19:39:04Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-10-15T19:39:04Z
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EXP MOL MED : 2021
|d 2022-11-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-10-15T19:39:04Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-08
920 1 _ |0 I:(DE-2719)1013008
|k AG Di Monte
|l Neurodegeneration and Neuroprotection in Parkinson´s Disease
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013008
980 1 _ |a FullTexts
999 C 5 |a 10.1038/nrm2873
|9 -- missing cx lookup --
|1 P Brundin
|p 301 -
|2 Crossref
|u Brundin, P., Melki, R. & Kopito, R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat. Rev. Mol. Cell Biol. 11, 301–307 (2010).
|t Nat. Rev. Mol. Cell Biol.
|v 11
|y 2010
999 C 5 |a 10.1038/s41593-018-0238-6
|9 -- missing cx lookup --
|1 M Jucker
|p 1341 -
|2 Crossref
|u Jucker, M. & Walker, L. C. Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat. Neurosci. 21, 1341–1349 (2018).
|t Nat. Neurosci.
|v 21
|y 2018
999 C 5 |a 10.1016/j.neuron.2011.12.040
|9 -- missing cx lookup --
|1 A Raj
|p 1204 -
|2 Crossref
|u Raj, A., Kuceyeski, A. & Weiner, M. A network diffusion model of disease progression in dementia. Neuron 73, 1204–1215 (2012).
|t Neuron
|v 73
|y 2012
999 C 5 |a 10.1016/j.neuron.2012.03.004
|9 -- missing cx lookup --
|1 J Zhou
|p 1216 -
|2 Crossref
|u Zhou, J., Gennatas, E. D., Kramer, J. H., Miller, B. L. & Seeley, W. W. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 73, 1216–1227 (2012).
|t Neuron
|v 73
|y 2012
999 C 5 |a 10.1016/j.neuron.2011.11.033
|9 -- missing cx lookup --
|1 A de Calignon
|p 685 -
|2 Crossref
|u de Calignon, A. et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73, 685–697 (2012).
|t Neuron
|v 73
|y 2012
999 C 5 |a 10.1371/journal.pone.0031302
|9 -- missing cx lookup --
|1 L Liu
|p e31302 -
|2 Crossref
|u Liu, L. et al. Trans-synaptic spread of tau pathology in vivo. PLoS One 7, e31302 (2012).
|t PLoS One
|v 7
|y 2012
999 C 5 |a 10.1126/science.1227157
|9 -- missing cx lookup --
|1 KC Luk
|p 949 -
|2 Crossref
|u Luk, K. C. et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).
|t Science
|v 338
|y 2012
999 C 5 |9 -- missing cx lookup --
|a 10.1146/annurev-biochem-061516-045049
|2 Crossref
|u Vaquer-Alicea, J. & Diamond, M. I. Propagation of Protein Aggregation in Neurodegenerative Diseases. Annu. Rev. Biochem. https://doi.org/10.1146/annurev-biochem-061516-045049 (2019).
999 C 5 |a 10.1186/2051-5960-1-38
|9 -- missing cx lookup --
|1 AN Sacino
|p 38 -
|2 Crossref
|u Sacino, A. N. et al. Induction of CNS alpha-synuclein pathology by fibrillar and non-amyloidogenic recombinant alpha-synuclein. Acta Neuropathol. Commun. 1, 38 (2013).
|t Acta Neuropathol. Commun.
|v 1
|y 2013
999 C 5 |a 10.1073/pnas.1321785111
|9 -- missing cx lookup --
|1 AN Sacino
|p 10732 -
|2 Crossref
|u Sacino, A. N. et al. Intramuscular injection of alpha-synuclein induces CNS alpha-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc. Natl Acad. Sci. USA. 111, 10732–10737 (2014).
|t Proc. Natl Acad. Sci. USA.
|v 111
|y 2014
999 C 5 |a 10.1523/JNEUROSCI.2102-14.2014
|9 -- missing cx lookup --
|1 AN Sacino
|p 12368 -
|2 Crossref
|u Sacino, A. N. et al. Brain injection of alpha-synuclein induces multiple proteinopathies, gliosis, and a neuronal injury marker. J. Neurosci. 34, 12368–12378 (2014).
|t J. Neurosci.
|v 34
|y 2014
999 C 5 |a 10.1038/emm.2017.1
|1 BC Jung
|9 -- missing cx lookup --
|2 Crossref
|u Jung, B. C. et al. Amplification of distinct alpha-synuclein fibril conformers through protein misfolding cyclic amplification. Exp. Mol. Med. 49, e314 (2017).
|t Exp. Mol. Med.
|v 49
|y 2017
999 C 5 |a 10.1074/jbc.M105326200
|9 -- missing cx lookup --
|1 HJ Lee
|p 5411 -
|2 Crossref
|u Lee, H. J., Shin, S. Y., Choi, C., Lee, Y. H. & Lee, S. J. Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors. J. Biol. Chem. 277, 5411–5417 (2002).
|t J. Biol. Chem.
|v 277
|y 2002
999 C 5 |a 10.1002/jnr.10231
|9 -- missing cx lookup --
|1 E Rockenstein
|p 568 -
|2 Crossref
|u Rockenstein, E. et al. Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J. Neurosci. Res. 68, 568–578 (2002).
|t J. Neurosci. Res.
|v 68
|y 2002
999 C 5 |a 10.1016/j.biopsych.2008.03.026
|9 -- missing cx lookup --
|1 V Krishnan
|p 336 -
|2 Crossref
|u Krishnan, V. et al. Calcium-sensitive adenylyl cyclases in depression and anxiety: behavioral and biochemical consequences of isoform targeting. Biol. Psychiat. 64, 336–343 (2008).
|t Biol. Psychiat.
|v 64
|y 2008
999 C 5 |a 10.1371/journal.pone.0147733
|9 -- missing cx lookup --
|1 A Wolf
|p e0147733 -
|2 Crossref
|u Wolf, A., Bauer, B., Abner, E. L., Ashkenazy-Frolinger, T. & Hartz, A. M. A Comprehensive Behavioral Test Battery to Assess Learning and Memory in 129S6/Tg2576 Mice. PLoS One 11, e0147733 (2016).
|t PLoS One
|v 11
|y 2016
999 C 5 |a 10.1016/0896-6273(95)90107-8
|9 -- missing cx lookup --
|1 KK Hsiao
|p 1203 -
|2 Crossref
|u Hsiao, K. K. et al. Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron 15, 1203–1218 (1995).
|t Neuron
|v 15
|y 1995
999 C 5 |a 10.1007/s12035-015-9160-z
|9 -- missing cx lookup --
|1 TK Kim
|p 2843 -
|2 Crossref
|u Kim, T. K. et al. G9a-Mediated Regulation of OXT and AVP Expression in the Basolateral Amygdala Mediates Stress-Induced Lasting Behavioral Depression and Its Reversal by Exercise. Mol. Neurobiol. 53, 2843–2856 (2016).
|t Mol. Neurobiol.
|v 53
|y 2016
999 C 5 |a 10.1002/emmm.201302475
|9 -- missing cx lookup --
|1 A Ulusoy
|p 1119 -
|2 Crossref
|u Ulusoy, A. et al. Caudo-rostral brain spreading of alpha-synuclein through vagal connections. EMBO Mol. Med. 5, 1119–1127 (2013).
|t EMBO Mol. Med.
|v 5
|y 2013
999 C 5 |a 10.1111/j.1365-2818.1987.tb02837.x
|9 -- missing cx lookup --
|1 HJ Gundersen
|p 229 -
|2 Crossref
|u Gundersen, H. J. & Jensen, E. B. The efficiency of systematic sampling in stereology and its prediction. J. Microsc 147, 229–263 (1987).
|t J. Microsc
|v 147
|y 1987
999 C 5 |a 10.1186/s13059-014-0550-8
|1 MI Love
|9 -- missing cx lookup --
|2 Crossref
|u Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
|t Genome Biol.
|v 15
|y 2014
999 C 5 |a 10.1093/bioinformatics/btp101
|9 -- missing cx lookup --
|1 G Bindea
|p 1091 -
|2 Crossref
|u Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093 (2009).
|t Bioinformatics
|v 25
|y 2009
999 C 5 |a 10.1038/nprot.2008.211
|9 -- missing cx lookup --
|1 W Huang da
|p 44 -
|2 Crossref
|u Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
|t Nat. Protoc.
|v 4
|y 2009
999 C 5 |a 10.1016/j.bbrc.2008.05.045
|9 -- missing cx lookup --
|1 HJ Lee
|p 423 -
|2 Crossref
|u Lee, H. J., Suk, J. E., Bae, E. J. & Lee, S. J. Clearance and deposition of extracellular alpha-synuclein aggregates in microglia. Biochem. Biophys. Res. Commun. 372, 423–428 (2008).
|t Biochem. Biophys. Res. Commun.
|v 372
|y 2008
999 C 5 |a 10.1038/s41467-018-05958-z
|1 EJ Bae
|9 -- missing cx lookup --
|2 Crossref
|u Bae, E. J. et al. LRRK2 kinase regulates alpha-synuclein propagation via RAB35 phosphorylation. Nat. Commun. 9, 3465 (2018).
|t Nat. Commun.
|v 9
|y 2018
999 C 5 |a 10.1038/ncomms5755
|1 EJ Bae
|9 -- missing cx lookup --
|2 Crossref
|u Bae, E. J. et al. Glucocerebrosidase depletion enhances cell-to-cell transmission of alpha-synuclein. Nat. Commun. 5, 4755 (2014).
|t Nat. Commun.
|v 5
|y 2014
999 C 5 |a 10.1126/sciadv.abc4364
|9 -- missing cx lookup --
|1 F De Giorgi
|p eabc4364 -
|2 Crossref
|u De Giorgi, F. et al. Novel self-replicating alpha-synuclein polymorphs that escape ThT monitoring can spontaneously emerge and acutely spread in neurons. Sci. Adv. 6, eabc4364 (2020).
|t Sci. Adv.
|v 6
|y 2020
999 C 5 |a 10.3233/JAD-2011-102100
|9 -- missing cx lookup --
|1 D Yanagisawa
|p 33 -
|2 Crossref
|u Yanagisawa, D. et al. Curcuminoid binds to amyloid-beta1-42 oligomer and fibril. J. Alzheimers Dis. 24(Suppl 2), 33–42 (2011).
|t J. Alzheimers Dis.
|v 24
|y 2011
999 C 5 |a 10.1523/JNEUROSCI.0143-07.2008
|9 -- missing cx lookup --
|1 HM Gao
|p 7687 -
|2 Crossref
|u Gao, H. M. et al. Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J. Neurosci. 28, 7687–7698 (2008).
|t J. Neurosci.
|v 28
|y 2008
999 C 5 |a 10.1038/ncomms2534
|1 C Kim
|9 -- missing cx lookup --
|2 Crossref
|u Kim, C. et al. Neuron-released oligomeric alpha-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat. Commun. 4, 1562 (2013).
|t Nat. Commun.
|v 4
|y 2013
999 C 5 |a 10.1093/brain/awz104
|9 -- missing cx lookup --
|1 CW Olanow
|p 1690 -
|2 Crossref
|u Olanow, C. W., Savolainen, M., Chu, Y., Halliday, G. M. & Kordower, J. H. Temporal evolution of microglia and alpha-synuclein accumulation following foetal grafting in Parkinson’s disease. Brain 142, 1690–1700 (2019).
|t Brain
|v 142
|y 2019
999 C 5 |a 10.1038/s41586-019-1769-z
|9 -- missing cx lookup --
|1 C Ising
|p 669 -
|2 Crossref
|u Ising, C. et al. NLRP3 inflammasome activation drives tau pathology. Nature 575, 669–673 (2019).
|t Nature
|v 575
|y 2019
999 C 5 |a 10.1289/ehp.1003013
|9 -- missing cx lookup --
|1 HM Gao
|p 807 -
|2 Crossref
|u Gao, H. M. et al. Neuroinflammation and alpha-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson’s disease. Environ. Health Persp. 119, 807–814 (2011).
|t Environ. Health Persp.
|v 119
|y 2011
999 C 5 |9 -- missing cx lookup --
|a 10.1126/scitranslmed.aah4066
|2 Crossref
|u Gordon, R. et al. Inflammasome inhibition prevents alpha-synuclein pathology and dopaminergic neurodegeneration in mice. Sci. Transl. Med. 10, eaah4066, (2018).
999 C 5 |a 10.1038/s41467-020-15626-w
|1 CS Lindestam Arlehamn
|9 -- missing cx lookup --
|2 Crossref
|u Lindestam Arlehamn, C. S. et al. alpha-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson’s disease. Nat. Commun. 11, 1875 (2020).
|t Nat. Commun.
|v 11
|y 2020
999 C 5 |a 10.1038/s41467-020-15119-w
|1 I Choi
|9 -- missing cx lookup --
|2 Crossref
|u Choi, I. et al. Microglia clear neuron-released α-synuclein via selective autophagy and prevent neurodegeneration. Nat. Commun. 11, 1386 (2020).
|t Nat. Commun.
|v 11
|y 2020
999 C 5 |a 10.1073/pnas.1909110117
|9 -- missing cx lookup --
|1 RH Earls
|p 1762 -
|2 Crossref
|u Earls, R. H. et al. NK cells clear α-synuclein and the depletion of NK cells exacerbates synuclein pathology in a mouse model of α-synucleinopathy. Proc. Natl Acad. Sci. USA. 117, 1762–1771 (2020).
|t Proc. Natl Acad. Sci. USA.
|v 117
|y 2020
999 C 5 |a 10.3233/JPD-202351
|9 -- missing cx lookup --
|1 S George
|p 585 -
|2 Crossref
|u George, S. et al. T Cells Limit Accumulation of Aggregate Pathology Following Intrastriatal Injection of α-Synuclein Fibrils. J. Parkinsons. Dis. 11, 585–603 (2021).
|t J. Parkinsons. Dis.
|v 11
|y 2021
999 C 5 |a 10.1038/s41593-019-0539-4
|9 -- missing cx lookup --
|1 A Grubman
|p 2087 -
|2 Crossref
|u Grubman, A. et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nat. Neurosci. 22, 2087–2097 (2019).
|t Nat. Neurosci.
|v 22
|y 2019
999 C 5 |a 10.1038/s41593-020-0624-8
|9 -- missing cx lookup --
|1 N Habib
|p 701 -
|2 Crossref
|u Habib, N. et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 23, 701–706 (2020).
|t Nat. Neurosci.
|v 23
|y 2020
999 C 5 |a 10.1016/j.cell.2017.05.018
|9 -- missing cx lookup --
|1 H Keren-Shaul
|p 1276 -
|2 Crossref
|u Keren-Shaul, H. et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell 169, 1276–1290 e1217 (2017).
|t Cell
|v 169
|y 2017
999 C 5 |a 10.1016/j.celrep.2020.107843
|9 -- missing cx lookup --
|1 K Srinivasan
|p 107843 -
|2 Crossref
|u Srinivasan, K. et al. Alzheimer’s Patient Microglia Exhibit Enhanced Aging and Unique Transcriptional Activation. Cell Rep. 31, 107843 (2020).
|t Cell Rep.
|v 31
|y 2020
999 C 5 |a 10.1038/s12276-022-00789-x
|9 -- missing cx lookup --
|1 EJ Bae
|p 788 -
|2 Crossref
|u Bae, E. J. et al. TNF-alpha promotes alpha-synuclein propagation through stimulation of senescence-associated lysosomal exocytosis. Exp. Mol. Med. 54, 788–800 (2022).
|t Exp. Mol. Med.
|v 54
|y 2022
999 C 5 |a 10.1002/mds.28558
|9 -- missing cx lookup --
|1 J Ueda
|p 1554 -
|2 Crossref
|u Ueda, J. et al. Perampanel Inhibits alpha-Synuclein Transmission in Parkinson’s Disease Models. Mov. Disord. 36, 1554–1564 (2021).
|t Mov. Disord.
|v 36
|y 2021
999 C 5 |a 10.1007/s00401-020-02227-6
|9 -- missing cx lookup --
|1 Q Wu
|p 831 -
|2 Crossref
|u Wu, Q. et al. Neuronal activity modulates alpha-synuclein aggregation and spreading in organotypic brain slice cultures and in vivo. Acta Neuropathol. 140, 831–849 (2020).
|t Acta Neuropathol.
|v 140
|y 2020
999 C 5 |a 10.1111/jnc.12131
|9 -- missing cx lookup --
|1 S Paillusson
|p 512 -
|2 Crossref
|u Paillusson, S., Clairembault, T., Biraud, M., Neunlist, M. & Derkinderen, P. Activity-dependent secretion of alpha-synuclein by enteric neurons. J. Neurochem. 125, 512–517 (2013).
|t J. Neurochem.
|v 125
|y 2013
999 C 5 |a 10.1186/s13024-018-0241-0
|9 -- missing cx lookup --
|1 K Yamada
|p 9 -
|2 Crossref
|u Yamada, K. & Iwatsubo, T. Extracellular alpha-synuclein levels are regulated by neuronal activity. Mol. Neurodegener. 13, 9 (2018).
|t Mol. Neurodegener.
|v 13
|y 2018
999 C 5 |a 10.1016/0092-8674(93)90635-4
|9 -- missing cx lookup --
|1 JT Jarrett
|p 1055 -
|2 Crossref
|u Jarrett, J. T. & Lansbury, P. T. Jr. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73, 1055–1058 (1993).
|t Cell
|v 73
|y 1993


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21