001 | 169133 | ||
005 | 20240311115323.0 | ||
024 | 7 | _ | |a pmc:PMC9794777 |2 pmc |
024 | 7 | _ | |a 10.1038/s12276-022-00895-w |2 doi |
024 | 7 | _ | |a pmid:36473937 |2 pmid |
024 | 7 | _ | |a 0378-8512 |2 ISSN |
024 | 7 | _ | |a 1226-3613 |2 ISSN |
024 | 7 | _ | |a 2092-6413 |2 ISSN |
024 | 7 | _ | |a altmetric:139774624 |2 altmetric |
037 | _ | _ | |a DZNE-2023-00012 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Kim, Tae-Kyung |b 0 |
245 | _ | _ | |a Inflammation promotes synucleinopathy propagation. |
260 | _ | _ | |a Seoul |c 2022 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1672829002_30811 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a ISSN 2092-6413 not unique: **2 hits**. |
520 | _ | _ | |a The clinical progression of neurodegenerative diseases correlates with the spread of proteinopathy in the brain. The current understanding of the mechanism of proteinopathy spread is far from complete. Here, we propose that inflammation is fundamental to proteinopathy spread. A sequence variant of α-synuclein (V40G) was much less capable of fibril formation than wild-type α-synuclein (WT-syn) and, when mixed with WT-syn, interfered with its fibrillation. However, when V40G was injected intracerebrally into mice, it induced aggregate spreading even more effectively than WT-syn. Aggregate spreading was preceded by sustained microgliosis and inflammatory responses, which were more robust with V40G than with WT-syn. Oral administration of an anti-inflammatory agent suppressed aggregate spreading, inflammation, and behavioral deficits in mice. Furthermore, exposure of cells to inflammatory cytokines increased the cell-to-cell propagation of α-synuclein. These results suggest that the inflammatory microenvironment is the major driver of the spread of synucleinopathy in the brain. |
536 | _ | _ | |a 352 - Disease Mechanisms (POF4-352) |0 G:(DE-HGF)POF4-352 |c POF4-352 |f POF IV |x 0 |
542 | _ | _ | |i 2022-12-06 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
542 | _ | _ | |i 2022-12-06 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
650 | _ | 7 | |a alpha-Synuclein |2 NLM Chemicals |
650 | _ | 2 | |a Mice |2 MeSH |
650 | _ | 2 | |a Animals |2 MeSH |
650 | _ | 2 | |a alpha-Synuclein: genetics |2 MeSH |
650 | _ | 2 | |a alpha-Synuclein: metabolism |2 MeSH |
650 | _ | 2 | |a Synucleinopathies |2 MeSH |
650 | _ | 2 | |a Brain: metabolism |2 MeSH |
650 | _ | 2 | |a Neurodegenerative Diseases |2 MeSH |
650 | _ | 2 | |a Inflammation |2 MeSH |
650 | _ | 2 | |a Disease Models, Animal |2 MeSH |
700 | 1 | _ | |a Bae, Eun-Jin |0 P:(DE-2719)9000874 |b 1 |
700 | 1 | _ | |a Jung, Byung Chul |b 2 |
700 | 1 | _ | |a Choi, Minsun |b 3 |
700 | 1 | _ | |a Shin, Soo Jean |b 4 |
700 | 1 | _ | |a Park, Sung Jun |b 5 |
700 | 1 | _ | |a Kim, Jeong Tae |b 6 |
700 | 1 | _ | |a Jung, Min Kyo |b 7 |
700 | 1 | _ | |a Ulusoy, Ayse |0 P:(DE-2719)2772760 |b 8 |
700 | 1 | _ | |a Song, Mi-Young |b 9 |
700 | 1 | _ | |a Lee, Jun Sung |b 10 |
700 | 1 | _ | |a Lee, He-Jin |b 11 |
700 | 1 | _ | |a Di Monte, Donato A |0 P:(DE-2719)2481741 |b 12 |
700 | 1 | _ | |a Lee, Seung-Jae |0 P:(DE-HGF)0 |b 13 |e Corresponding author |
773 | 1 | 8 | |a 10.1038/s12276-022-00895-w |b Springer Science and Business Media LLC |d 2022-12-06 |n 12 |p 2148-2161 |3 journal-article |2 Crossref |t Experimental & Molecular Medicine |v 54 |y 2022 |x 2092-6413 |
773 | _ | _ | |a 10.1038/s12276-022-00895-w |g Vol. 54, no. 12, p. 2148 - 2161 |0 PERI:(DE-600)2084833-X |n 12 |p 2148-2161 |t Experimental & molecular medicine |v 54 |y 2022 |x 2092-6413 |
856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/169133/files/DZNE-2023-00012.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/169133/files/DZNE-2023-00012.pdf?subformat=pdfa |
909 | C | O | |o oai:pub.dzne.de:169133 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-2719)9000874 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 8 |6 P:(DE-2719)2772760 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 12 |6 P:(DE-2719)2481741 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-352 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Mechanisms |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-08 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b EXP MOL MED : 2021 |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-10-15T19:39:04Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-10-15T19:39:04Z |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b EXP MOL MED : 2021 |d 2022-11-08 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2022-10-15T19:39:04Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-08 |
920 | 1 | _ | |0 I:(DE-2719)1013008 |k AG Di Monte |l Neurodegeneration and Neuroprotection in Parkinson´s Disease |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-2719)1013008 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1038/nrm2873 |9 -- missing cx lookup -- |1 P Brundin |p 301 - |2 Crossref |u Brundin, P., Melki, R. & Kopito, R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat. Rev. Mol. Cell Biol. 11, 301–307 (2010). |t Nat. Rev. Mol. Cell Biol. |v 11 |y 2010 |
999 | C | 5 | |a 10.1038/s41593-018-0238-6 |9 -- missing cx lookup -- |1 M Jucker |p 1341 - |2 Crossref |u Jucker, M. & Walker, L. C. Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat. Neurosci. 21, 1341–1349 (2018). |t Nat. Neurosci. |v 21 |y 2018 |
999 | C | 5 | |a 10.1016/j.neuron.2011.12.040 |9 -- missing cx lookup -- |1 A Raj |p 1204 - |2 Crossref |u Raj, A., Kuceyeski, A. & Weiner, M. A network diffusion model of disease progression in dementia. Neuron 73, 1204–1215 (2012). |t Neuron |v 73 |y 2012 |
999 | C | 5 | |a 10.1016/j.neuron.2012.03.004 |9 -- missing cx lookup -- |1 J Zhou |p 1216 - |2 Crossref |u Zhou, J., Gennatas, E. D., Kramer, J. H., Miller, B. L. & Seeley, W. W. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 73, 1216–1227 (2012). |t Neuron |v 73 |y 2012 |
999 | C | 5 | |a 10.1016/j.neuron.2011.11.033 |9 -- missing cx lookup -- |1 A de Calignon |p 685 - |2 Crossref |u de Calignon, A. et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73, 685–697 (2012). |t Neuron |v 73 |y 2012 |
999 | C | 5 | |a 10.1371/journal.pone.0031302 |9 -- missing cx lookup -- |1 L Liu |p e31302 - |2 Crossref |u Liu, L. et al. Trans-synaptic spread of tau pathology in vivo. PLoS One 7, e31302 (2012). |t PLoS One |v 7 |y 2012 |
999 | C | 5 | |a 10.1126/science.1227157 |9 -- missing cx lookup -- |1 KC Luk |p 949 - |2 Crossref |u Luk, K. C. et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012). |t Science |v 338 |y 2012 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1146/annurev-biochem-061516-045049 |2 Crossref |u Vaquer-Alicea, J. & Diamond, M. I. Propagation of Protein Aggregation in Neurodegenerative Diseases. Annu. Rev. Biochem. https://doi.org/10.1146/annurev-biochem-061516-045049 (2019). |
999 | C | 5 | |a 10.1186/2051-5960-1-38 |9 -- missing cx lookup -- |1 AN Sacino |p 38 - |2 Crossref |u Sacino, A. N. et al. Induction of CNS alpha-synuclein pathology by fibrillar and non-amyloidogenic recombinant alpha-synuclein. Acta Neuropathol. Commun. 1, 38 (2013). |t Acta Neuropathol. Commun. |v 1 |y 2013 |
999 | C | 5 | |a 10.1073/pnas.1321785111 |9 -- missing cx lookup -- |1 AN Sacino |p 10732 - |2 Crossref |u Sacino, A. N. et al. Intramuscular injection of alpha-synuclein induces CNS alpha-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc. Natl Acad. Sci. USA. 111, 10732–10737 (2014). |t Proc. Natl Acad. Sci. USA. |v 111 |y 2014 |
999 | C | 5 | |a 10.1523/JNEUROSCI.2102-14.2014 |9 -- missing cx lookup -- |1 AN Sacino |p 12368 - |2 Crossref |u Sacino, A. N. et al. Brain injection of alpha-synuclein induces multiple proteinopathies, gliosis, and a neuronal injury marker. J. Neurosci. 34, 12368–12378 (2014). |t J. Neurosci. |v 34 |y 2014 |
999 | C | 5 | |a 10.1038/emm.2017.1 |1 BC Jung |9 -- missing cx lookup -- |2 Crossref |u Jung, B. C. et al. Amplification of distinct alpha-synuclein fibril conformers through protein misfolding cyclic amplification. Exp. Mol. Med. 49, e314 (2017). |t Exp. Mol. Med. |v 49 |y 2017 |
999 | C | 5 | |a 10.1074/jbc.M105326200 |9 -- missing cx lookup -- |1 HJ Lee |p 5411 - |2 Crossref |u Lee, H. J., Shin, S. Y., Choi, C., Lee, Y. H. & Lee, S. J. Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors. J. Biol. Chem. 277, 5411–5417 (2002). |t J. Biol. Chem. |v 277 |y 2002 |
999 | C | 5 | |a 10.1002/jnr.10231 |9 -- missing cx lookup -- |1 E Rockenstein |p 568 - |2 Crossref |u Rockenstein, E. et al. Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J. Neurosci. Res. 68, 568–578 (2002). |t J. Neurosci. Res. |v 68 |y 2002 |
999 | C | 5 | |a 10.1016/j.biopsych.2008.03.026 |9 -- missing cx lookup -- |1 V Krishnan |p 336 - |2 Crossref |u Krishnan, V. et al. Calcium-sensitive adenylyl cyclases in depression and anxiety: behavioral and biochemical consequences of isoform targeting. Biol. Psychiat. 64, 336–343 (2008). |t Biol. Psychiat. |v 64 |y 2008 |
999 | C | 5 | |a 10.1371/journal.pone.0147733 |9 -- missing cx lookup -- |1 A Wolf |p e0147733 - |2 Crossref |u Wolf, A., Bauer, B., Abner, E. L., Ashkenazy-Frolinger, T. & Hartz, A. M. A Comprehensive Behavioral Test Battery to Assess Learning and Memory in 129S6/Tg2576 Mice. PLoS One 11, e0147733 (2016). |t PLoS One |v 11 |y 2016 |
999 | C | 5 | |a 10.1016/0896-6273(95)90107-8 |9 -- missing cx lookup -- |1 KK Hsiao |p 1203 - |2 Crossref |u Hsiao, K. K. et al. Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron 15, 1203–1218 (1995). |t Neuron |v 15 |y 1995 |
999 | C | 5 | |a 10.1007/s12035-015-9160-z |9 -- missing cx lookup -- |1 TK Kim |p 2843 - |2 Crossref |u Kim, T. K. et al. G9a-Mediated Regulation of OXT and AVP Expression in the Basolateral Amygdala Mediates Stress-Induced Lasting Behavioral Depression and Its Reversal by Exercise. Mol. Neurobiol. 53, 2843–2856 (2016). |t Mol. Neurobiol. |v 53 |y 2016 |
999 | C | 5 | |a 10.1002/emmm.201302475 |9 -- missing cx lookup -- |1 A Ulusoy |p 1119 - |2 Crossref |u Ulusoy, A. et al. Caudo-rostral brain spreading of alpha-synuclein through vagal connections. EMBO Mol. Med. 5, 1119–1127 (2013). |t EMBO Mol. Med. |v 5 |y 2013 |
999 | C | 5 | |a 10.1111/j.1365-2818.1987.tb02837.x |9 -- missing cx lookup -- |1 HJ Gundersen |p 229 - |2 Crossref |u Gundersen, H. J. & Jensen, E. B. The efficiency of systematic sampling in stereology and its prediction. J. Microsc 147, 229–263 (1987). |t J. Microsc |v 147 |y 1987 |
999 | C | 5 | |a 10.1186/s13059-014-0550-8 |1 MI Love |9 -- missing cx lookup -- |2 Crossref |u Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). |t Genome Biol. |v 15 |y 2014 |
999 | C | 5 | |a 10.1093/bioinformatics/btp101 |9 -- missing cx lookup -- |1 G Bindea |p 1091 - |2 Crossref |u Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093 (2009). |t Bioinformatics |v 25 |y 2009 |
999 | C | 5 | |a 10.1038/nprot.2008.211 |9 -- missing cx lookup -- |1 W Huang da |p 44 - |2 Crossref |u Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009). |t Nat. Protoc. |v 4 |y 2009 |
999 | C | 5 | |a 10.1016/j.bbrc.2008.05.045 |9 -- missing cx lookup -- |1 HJ Lee |p 423 - |2 Crossref |u Lee, H. J., Suk, J. E., Bae, E. J. & Lee, S. J. Clearance and deposition of extracellular alpha-synuclein aggregates in microglia. Biochem. Biophys. Res. Commun. 372, 423–428 (2008). |t Biochem. Biophys. Res. Commun. |v 372 |y 2008 |
999 | C | 5 | |a 10.1038/s41467-018-05958-z |1 EJ Bae |9 -- missing cx lookup -- |2 Crossref |u Bae, E. J. et al. LRRK2 kinase regulates alpha-synuclein propagation via RAB35 phosphorylation. Nat. Commun. 9, 3465 (2018). |t Nat. Commun. |v 9 |y 2018 |
999 | C | 5 | |a 10.1038/ncomms5755 |1 EJ Bae |9 -- missing cx lookup -- |2 Crossref |u Bae, E. J. et al. Glucocerebrosidase depletion enhances cell-to-cell transmission of alpha-synuclein. Nat. Commun. 5, 4755 (2014). |t Nat. Commun. |v 5 |y 2014 |
999 | C | 5 | |a 10.1126/sciadv.abc4364 |9 -- missing cx lookup -- |1 F De Giorgi |p eabc4364 - |2 Crossref |u De Giorgi, F. et al. Novel self-replicating alpha-synuclein polymorphs that escape ThT monitoring can spontaneously emerge and acutely spread in neurons. Sci. Adv. 6, eabc4364 (2020). |t Sci. Adv. |v 6 |y 2020 |
999 | C | 5 | |a 10.3233/JAD-2011-102100 |9 -- missing cx lookup -- |1 D Yanagisawa |p 33 - |2 Crossref |u Yanagisawa, D. et al. Curcuminoid binds to amyloid-beta1-42 oligomer and fibril. J. Alzheimers Dis. 24(Suppl 2), 33–42 (2011). |t J. Alzheimers Dis. |v 24 |y 2011 |
999 | C | 5 | |a 10.1523/JNEUROSCI.0143-07.2008 |9 -- missing cx lookup -- |1 HM Gao |p 7687 - |2 Crossref |u Gao, H. M. et al. Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J. Neurosci. 28, 7687–7698 (2008). |t J. Neurosci. |v 28 |y 2008 |
999 | C | 5 | |a 10.1038/ncomms2534 |1 C Kim |9 -- missing cx lookup -- |2 Crossref |u Kim, C. et al. Neuron-released oligomeric alpha-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat. Commun. 4, 1562 (2013). |t Nat. Commun. |v 4 |y 2013 |
999 | C | 5 | |a 10.1093/brain/awz104 |9 -- missing cx lookup -- |1 CW Olanow |p 1690 - |2 Crossref |u Olanow, C. W., Savolainen, M., Chu, Y., Halliday, G. M. & Kordower, J. H. Temporal evolution of microglia and alpha-synuclein accumulation following foetal grafting in Parkinson’s disease. Brain 142, 1690–1700 (2019). |t Brain |v 142 |y 2019 |
999 | C | 5 | |a 10.1038/s41586-019-1769-z |9 -- missing cx lookup -- |1 C Ising |p 669 - |2 Crossref |u Ising, C. et al. NLRP3 inflammasome activation drives tau pathology. Nature 575, 669–673 (2019). |t Nature |v 575 |y 2019 |
999 | C | 5 | |a 10.1289/ehp.1003013 |9 -- missing cx lookup -- |1 HM Gao |p 807 - |2 Crossref |u Gao, H. M. et al. Neuroinflammation and alpha-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson’s disease. Environ. Health Persp. 119, 807–814 (2011). |t Environ. Health Persp. |v 119 |y 2011 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1126/scitranslmed.aah4066 |2 Crossref |u Gordon, R. et al. Inflammasome inhibition prevents alpha-synuclein pathology and dopaminergic neurodegeneration in mice. Sci. Transl. Med. 10, eaah4066, (2018). |
999 | C | 5 | |a 10.1038/s41467-020-15626-w |1 CS Lindestam Arlehamn |9 -- missing cx lookup -- |2 Crossref |u Lindestam Arlehamn, C. S. et al. alpha-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson’s disease. Nat. Commun. 11, 1875 (2020). |t Nat. Commun. |v 11 |y 2020 |
999 | C | 5 | |a 10.1038/s41467-020-15119-w |1 I Choi |9 -- missing cx lookup -- |2 Crossref |u Choi, I. et al. Microglia clear neuron-released α-synuclein via selective autophagy and prevent neurodegeneration. Nat. Commun. 11, 1386 (2020). |t Nat. Commun. |v 11 |y 2020 |
999 | C | 5 | |a 10.1073/pnas.1909110117 |9 -- missing cx lookup -- |1 RH Earls |p 1762 - |2 Crossref |u Earls, R. H. et al. NK cells clear α-synuclein and the depletion of NK cells exacerbates synuclein pathology in a mouse model of α-synucleinopathy. Proc. Natl Acad. Sci. USA. 117, 1762–1771 (2020). |t Proc. Natl Acad. Sci. USA. |v 117 |y 2020 |
999 | C | 5 | |a 10.3233/JPD-202351 |9 -- missing cx lookup -- |1 S George |p 585 - |2 Crossref |u George, S. et al. T Cells Limit Accumulation of Aggregate Pathology Following Intrastriatal Injection of α-Synuclein Fibrils. J. Parkinsons. Dis. 11, 585–603 (2021). |t J. Parkinsons. Dis. |v 11 |y 2021 |
999 | C | 5 | |a 10.1038/s41593-019-0539-4 |9 -- missing cx lookup -- |1 A Grubman |p 2087 - |2 Crossref |u Grubman, A. et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nat. Neurosci. 22, 2087–2097 (2019). |t Nat. Neurosci. |v 22 |y 2019 |
999 | C | 5 | |a 10.1038/s41593-020-0624-8 |9 -- missing cx lookup -- |1 N Habib |p 701 - |2 Crossref |u Habib, N. et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 23, 701–706 (2020). |t Nat. Neurosci. |v 23 |y 2020 |
999 | C | 5 | |a 10.1016/j.cell.2017.05.018 |9 -- missing cx lookup -- |1 H Keren-Shaul |p 1276 - |2 Crossref |u Keren-Shaul, H. et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell 169, 1276–1290 e1217 (2017). |t Cell |v 169 |y 2017 |
999 | C | 5 | |a 10.1016/j.celrep.2020.107843 |9 -- missing cx lookup -- |1 K Srinivasan |p 107843 - |2 Crossref |u Srinivasan, K. et al. Alzheimer’s Patient Microglia Exhibit Enhanced Aging and Unique Transcriptional Activation. Cell Rep. 31, 107843 (2020). |t Cell Rep. |v 31 |y 2020 |
999 | C | 5 | |a 10.1038/s12276-022-00789-x |9 -- missing cx lookup -- |1 EJ Bae |p 788 - |2 Crossref |u Bae, E. J. et al. TNF-alpha promotes alpha-synuclein propagation through stimulation of senescence-associated lysosomal exocytosis. Exp. Mol. Med. 54, 788–800 (2022). |t Exp. Mol. Med. |v 54 |y 2022 |
999 | C | 5 | |a 10.1002/mds.28558 |9 -- missing cx lookup -- |1 J Ueda |p 1554 - |2 Crossref |u Ueda, J. et al. Perampanel Inhibits alpha-Synuclein Transmission in Parkinson’s Disease Models. Mov. Disord. 36, 1554–1564 (2021). |t Mov. Disord. |v 36 |y 2021 |
999 | C | 5 | |a 10.1007/s00401-020-02227-6 |9 -- missing cx lookup -- |1 Q Wu |p 831 - |2 Crossref |u Wu, Q. et al. Neuronal activity modulates alpha-synuclein aggregation and spreading in organotypic brain slice cultures and in vivo. Acta Neuropathol. 140, 831–849 (2020). |t Acta Neuropathol. |v 140 |y 2020 |
999 | C | 5 | |a 10.1111/jnc.12131 |9 -- missing cx lookup -- |1 S Paillusson |p 512 - |2 Crossref |u Paillusson, S., Clairembault, T., Biraud, M., Neunlist, M. & Derkinderen, P. Activity-dependent secretion of alpha-synuclein by enteric neurons. J. Neurochem. 125, 512–517 (2013). |t J. Neurochem. |v 125 |y 2013 |
999 | C | 5 | |a 10.1186/s13024-018-0241-0 |9 -- missing cx lookup -- |1 K Yamada |p 9 - |2 Crossref |u Yamada, K. & Iwatsubo, T. Extracellular alpha-synuclein levels are regulated by neuronal activity. Mol. Neurodegener. 13, 9 (2018). |t Mol. Neurodegener. |v 13 |y 2018 |
999 | C | 5 | |a 10.1016/0092-8674(93)90635-4 |9 -- missing cx lookup -- |1 JT Jarrett |p 1055 - |2 Crossref |u Jarrett, J. T. & Lansbury, P. T. Jr. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73, 1055–1058 (1993). |t Cell |v 73 |y 1993 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|