000169345 001__ 169345
000169345 005__ 20240308121405.0
000169345 0247_ $$2doi$$a10.1101/2022.05.13.491869
000169345 0247_ $$2altmetric$$aaltmetric:128290830
000169345 037__ $$aDZNE-2023-00120
000169345 1001_ $$00000-0002-7240-5926$$aKnab, Felix$$b0
000169345 245__ $$aPrediction of Stroke Outcome in Mice Based on Non-Invasive MRI and Behavioral Testing
000169345 260__ $$c2022
000169345 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1709896395_26561
000169345 3367_ $$2ORCID$$aWORKING_PAPER
000169345 3367_ $$028$$2EndNote$$aElectronic Article
000169345 3367_ $$2DRIVER$$apreprint
000169345 3367_ $$2BibTeX$$aARTICLE
000169345 3367_ $$2DataCite$$aOutput Types/Working Paper
000169345 520__ $$aPrediction of post-stroke outcome using the degree of subacute deficit or magnetic resonance imaging metrics is well studied in humans. While mice are the most commonly used animals in pre-clinical stroke research, systematic analysis of outcome predictors is lacking.Methods Data from a total of 13 studies that included 45 minutes of middle cerebral artery occlusion on 148 mice were pooled. Motor function was measured using a modified protocol for the staircase test of skilled reaching. Phases of subacute and residual deficit were defined. Magnetic resonance images of stroke lesions were co-registered on the Allen Mouse Brain Atlas to characterize stroke topology. Different random forest prediction models that either used motor-functional deficit or imaging parameters were generated for the subacute and residual deficits.Results We detected both a subacute and residual motor-functional deficit after stroke in mice. Different functional severity grades and recovery trajectories could be observed. We found that lesion volume is the best predictor of subacute deficit. The residual deficit can be predicted most accurately by the degree of the subacute deficit. When using imaging parameters for the prediction of the residual deficit, including information about the lesion topology increases prediction accuracy. A subset of anatomical regions within the ischemic lesion have an outstanding impact on the prediction of long-term outcome. Prediction accuracy depends on the degree of functional impairment.Conclusions For the first time, we identified and characterized predictors of post-stroke outcome in a large cohort of mice and found strong concordance with clinical data. In the future, using outcome prediction can improve the design of pre-clinical studies and guide intervention decisions.
000169345 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000169345 588__ $$aDataset connected to DataCite
000169345 7001_ $$00000-0001-6606-6369$$aKoch, Stefan Paul$$b1
000169345 7001_ $$00000-0003-0970-1308$$aMajor, Sebastian$$b2
000169345 7001_ $$00000-0002-6781-5226$$aFarr, Tracy D.$$b3
000169345 7001_ $$00000-0002-5053-2211$$aMueller, Susanne$$b4
000169345 7001_ $$00000-0002-9138-805X$$aEuskirchen, Philipp$$b5
000169345 7001_ $$00000-0001-6018-409X$$aEggers, Moritz$$b6
000169345 7001_ $$00000-0001-7932-470X$$aKuffner, Melanie T. C.$$b7
000169345 7001_ $$00000-0002-7755-7531$$aWalter, Josefine$$b8
000169345 7001_ $$00000-0001-7459-2828$$aDreier, Jens P.$$b9
000169345 7001_ $$0P:(DE-2719)2811033$$aEndres, Matthias$$b10$$udzne
000169345 7001_ $$0P:(DE-2719)2810838$$aDirnagl, Ulrich$$b11
000169345 7001_ $$00000-0002-0965-7530$$aWenger, Nikolaus$$b12
000169345 7001_ $$0P:(DE-HGF)0$$aHoffmann, Christian J.$$b13
000169345 7001_ $$00000-0001-8777-4823$$aBoehm-Sturm, Philipp$$b14
000169345 7001_ $$00000-0002-2063-2860$$aHarms, Christoph$$b15
000169345 773__ $$a10.1101/2022.05.13.491869
000169345 7870_ $$0DZNE-2022-01804$$aKnab, Felix et.al.$$dZenodo, 2022$$iRelatedTo$$r$$tOpen data repository, Knab et al., Prediction of stroke outcome in mice based on non-invasive MRI and behavioral testing
000169345 8564_ $$uhttps://pub.dzne.de/record/169345/files/DZNE-2023-00120_Restricted.pdf
000169345 8564_ $$uhttps://pub.dzne.de/record/169345/files/DZNE-2023-00120_Restricted.pdf?subformat=pdfa$$xpdfa
000169345 909CO $$ooai:pub.dzne.de:169345$$pVDB
000169345 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811033$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b10$$kDZNE
000169345 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810838$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b11$$kDZNE
000169345 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000169345 9141_ $$y2022
000169345 9201_ $$0I:(DE-2719)1811005$$kAG Endres$$lInterdisciplinary Dementia Research$$x0
000169345 9201_ $$0I:(DE-2719)1810002$$kAG Dirnagl$$lVascular Pathology$$x1
000169345 980__ $$apreprint
000169345 980__ $$aVDB
000169345 980__ $$aI:(DE-2719)1811005
000169345 980__ $$aI:(DE-2719)1810002
000169345 980__ $$aUNRESTRICTED