000169347 001__ 169347
000169347 005__ 20240112171828.0
000169347 0247_ $$2ISSN$$a0367-004x
000169347 0247_ $$2doi$$a10.1007/s00415-022-11549-2
000169347 0247_ $$2pmid$$apmid:36624183
000169347 0247_ $$2pmc$$apmc:PMC9829526
000169347 0247_ $$2ISSN$$a0012-1037
000169347 0247_ $$2ISSN$$a0340-5354
000169347 0247_ $$2ISSN$$a0939-1517
000169347 0247_ $$2ISSN$$a1432-1459
000169347 0247_ $$2ISSN$$a1619-800X
000169347 0247_ $$2altmetric$$aaltmetric:141241519
000169347 0247_ $$2ISSN$$a0367-004X
000169347 037__ $$aDZNE-2023-00122
000169347 041__ $$aEnglish
000169347 082__ $$a610
000169347 1001_ $$0P:(DE-2719)2812183$$aHermann, Peter$$b0$$udzne
000169347 245__ $$aApplication of real-time quaking-induced conversion in Creutzfeldt-Jakob disease surveillance.
000169347 260__ $$aBerlin$$bSpringer$$c2023
000169347 3367_ $$2DRIVER$$aarticle
000169347 3367_ $$2DataCite$$aOutput Types/Journal article
000169347 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1679323793_14048
000169347 3367_ $$2BibTeX$$aARTICLE
000169347 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000169347 3367_ $$00$$2EndNote$$aJournal Article
000169347 500__ $$aISSN 1432-1459 not unique: **2 hits**.
000169347 520__ $$aEvaluation of the application of CSF real-time quaking-induced conversion in Creutzfeldt-Jakob disease surveillance to investigate test accuracy, influencing factors, and associations with disease incidence.In a prospective surveillance study, CSF real-time quaking-induced conversion was performed in patients with clinical suspicion of prion disease (2014-2022). Clinically or histochemically characterized patients with sporadic Creutzfeldt-Jakob disease (n = 888) and patients with final diagnosis of non-prion disease (n = 371) were included for accuracy and association studies.The overall test sensitivity for sporadic Creutzfeldt-Jakob disease was 90% and the specificity 99%. Lower sensitivity was associated with early disease stage (p = 0.029) and longer survival (p < 0.001). The frequency of false positives was significantly higher in patients with inflammatory CNS diseases (3.7%) than in other diagnoses (0.4%, p = 0.027). The incidence increased from 1.7 per million person-years (2006-2017) to 2.0 after the test was added to diagnostic the criteria (2018-2021).We validated high diagnostic accuracy of CSF real-time quaking-induced conversion but identified inflammatory brain disease as a potential source of (rare) false-positive results, indicating thorough consideration of this condition in the differential diagnosis of Creutzfeldt-Jakob disease. The surveillance improved after amendment of the diagnostic criteria, whereas the incidence showed no suggestive alterations during the COVID-19 pandemic.
000169347 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000169347 542__ $$2Crossref$$i2023-01-10$$uhttps://creativecommons.org/licenses/by/4.0
000169347 542__ $$2Crossref$$i2023-01-10$$uhttps://creativecommons.org/licenses/by/4.0
000169347 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000169347 650_2 $$2MeSH$$aHumans
000169347 650_2 $$2MeSH$$aCreutzfeldt-Jakob Syndrome: diagnosis
000169347 650_2 $$2MeSH$$aCreutzfeldt-Jakob Syndrome: epidemiology
000169347 650_2 $$2MeSH$$aProspective Studies
000169347 650_2 $$2MeSH$$aPandemics
000169347 650_2 $$2MeSH$$aSensitivity and Specificity
000169347 650_2 $$2MeSH$$aCOVID-19
000169347 650_7 $$2Other$$aCreutzfeldt–Jakob disease
000169347 650_7 $$2Other$$aCreutzfeldt–Jakob disease
000169347 650_7 $$2Other$$aDiagnosis
000169347 650_7 $$2Other$$aEpidemiology
000169347 650_7 $$2Other$$aPrion
000169347 650_7 $$2Other$$aRT-QuIC
000169347 7001_ $$0P:(DE-2719)9000287$$aSchmitz, Matthias$$b1$$udzne
000169347 7001_ $$0P:(DE-2719)2810657$$aCramm, Maria$$b2$$udzne
000169347 7001_ $$0P:(DE-2719)9001986$$aGoebel, Stefan$$b3$$udzne
000169347 7001_ $$aBunck, Timothy$$b4
000169347 7001_ $$aSchütte-Schmidt, Julia$$b5
000169347 7001_ $$aSchulz-Schaeffer, Walter$$b6
000169347 7001_ $$0P:(DE-2719)9000922$$aStadelmann, Christine$$b7$$udzne
000169347 7001_ $$aMatschke, Jakob$$b8
000169347 7001_ $$aGlatzel, Markus$$b9
000169347 7001_ $$0P:(DE-2719)2000058$$aZerr, Inga$$b10$$eLast author$$udzne
000169347 77318 $$2Crossref$$3journal-article$$a10.1007/s00415-022-11549-2$$bSpringer Science and Business Media LLC$$d2023-01-10$$n4$$p2149-2161$$tJournal of Neurology$$v270$$x0340-5354$$y2023
000169347 773__ $$0PERI:(DE-600)1421299-7$$a10.1007/s00415-022-11549-2$$n4$$p2149-2161$$tJournal of neurology$$v270$$x0340-5354$$y2023
000169347 8564_ $$uhttps://pub.dzne.de/record/169347/files/DZNE-2023-00122%20SUP.pdf
000169347 8564_ $$uhttps://pub.dzne.de/record/169347/files/DZNE-2023-00122%20SUP.pdf?subformat=pdfa$$xpdfa
000169347 8564_ $$uhttps://pub.dzne.de/record/169347/files/DZNE-2023-00122.pdf$$yOpenAccess
000169347 8564_ $$uhttps://pub.dzne.de/record/169347/files/DZNE-2023-00122.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000169347 909CO $$ooai:pub.dzne.de:169347$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000169347 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)2812183$$aExternal Institute$$b0$$kExtern
000169347 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000287$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000169347 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)2810657$$aExternal Institute$$b2$$kExtern
000169347 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9001986$$aExternal Institute$$b3$$kExtern
000169347 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9000922$$aExternal Institute$$b7$$kExtern
000169347 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2000058$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b10$$kDZNE
000169347 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000169347 9141_ $$y2023
000169347 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000169347 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000169347 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
000169347 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000169347 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000169347 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROL : 2022$$d2023-10-21
000169347 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
000169347 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
000169347 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000169347 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
000169347 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000169347 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
000169347 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NEUROL : 2022$$d2023-10-21
000169347 9201_ $$0I:(DE-2719)1440011-1$$kAG Zerr$$lTranslational Studies and Biomarkers$$x0
000169347 9201_ $$0I:(DE-2719)5000037$$kExt UMG Zerr$$lExt UMG Zerr$$x1
000169347 980__ $$ajournal
000169347 980__ $$aVDB
000169347 980__ $$aI:(DE-2719)1440011-1
000169347 980__ $$aI:(DE-2719)5000037
000169347 980__ $$aUNRESTRICTED
000169347 9801_ $$aFullTexts
000169347 999C5 $$1SB Prusiner$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.95.23.13363$$p13363 -$$tProc Natl Acad Sci U S A$$uPrusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95:13363–13383. https://doi.org/10.1073/pnas.95.23.13363$$v95$$y1998
000169347 999C5 $$1P Brown$$2Crossref$$9-- missing cx lookup --$$a10.1002/ana.410350504$$p513 -$$tAnn Neurol$$uBrown P, Gibbs CJ Jr, Rodgers-Johnson P et al (1994) Human spongiform encephalopathy: the National Institutes of Health series of 300 cases of experimentally transmitted disease. Ann Neurol 35:513–529. https://doi.org/10.1002/ana.410350504$$v35$$y1994
000169347 999C5 $$1N Watson$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41582-021-00488-7$$p362 -$$tNat Rev Neurol$$uWatson N, Brandel JP, Green A et al (2021) The importance of ongoing international surveillance for Creutzfeldt–Jakob disease. Nat Rev Neurol 17:362–379. https://doi.org/10.1038/s41582-021-00488-7$$v17$$y2021
000169347 999C5 $$1A Ladogana$$2Crossref$$9-- missing cx lookup --$$a10.1212/01.WNL.0000160117.56690.B2$$p1586 -$$tNeurology$$uLadogana A, Puopolo M, Croes EA et al (2005) Mortality from Creutzfeldt–Jakob disease and related disorders in Europe, Australia, and Canada. Neurology 64:1586–1591. https://doi.org/10.1212/01.WNL.0000160117.56690.B2$$v64$$y2005
000169347 999C5 $$1L Uttley$$2Crossref$$9-- missing cx lookup --$$a10.1016/S1473-3099(19)30615-2$$pe2 -$$tLancet Infect Dis$$uUttley L, Carroll C, Wong R et al (2020) Creutzfeldt–Jakob disease: a systematic review of global incidence, prevalence, infectivity, and incubation. Lancet Infect Dis 20:e2–e10. https://doi.org/10.1016/S1473-3099(19)30615-2$$v20$$y2020
000169347 999C5 $$1P Parchi$$2Crossref$$9-- missing cx lookup --$$a10.1002/1531-8249(199908)46:2<224::AID-ANA12>3.0.CO;2-W$$p224 -$$tAnn Neurol$$uParchi P, Giese A, Capellari S et al (1999) Classification of sporadic Creutzfeldt–Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 46:224–233$$v46$$y1999
000169347 999C5 $$1RJ Castellani$$2Crossref$$9-- missing cx lookup --$$a10.1212/01.wnl.0000135153.96325.3b$$p436 -$$tNeurology$$uCastellani RJ, Colucci M, Xie Z et al (2004) Sensitivity of 14-3-3 protein test varies in subtypes of sporadic Creutzfeldt–Jakob disease. Neurology 63:436–442. https://doi.org/10.1212/01.wnl.0000135153.96325.3b$$v63$$y2004
000169347 999C5 $$1A Bizzi$$2Crossref$$9-- missing cx lookup --$$a10.1002/ana.25983$$p560 -$$tAnn Neurol$$uBizzi A, Pascuzzo R, Blevins J et al (2021) Subtype diagnosis of sporadic Creutzfeldt–Jakob disease with diffusion magnetic resonance imaging. Ann Neurol 89:560–572. https://doi.org/10.1002/ana.25983$$v89$$y2021
000169347 999C5 $$1CL Masters$$2Crossref$$9-- missing cx lookup --$$a10.1002/ana.410050212$$p177 -$$tAnn Neurol$$uMasters CL, Harris JO, Gajdusek DC et al (1979) Creutzfeldt–Jakob disease: patterns of worldwide occurrence and the significance of familial and sporadic clustering. Ann Neurol 5:177–188. https://doi.org/10.1002/ana.410050212$$v5$$y1979
000169347 999C5 $$2Crossref$$uWHO. Global Surveillance, diagnosis, and Therapy of Human Transmissible spongiform Encephalopathies: Report of WHO consultation, February 9–11, 1998, Geneva, Switzerland
000169347 999C5 $$1I Zerr$$2Crossref$$9-- missing cx lookup --$$a10.1093/brain/awp19$$p2659 -$$tBrain$$uZerr I, Kallenberg K, Summers DM et al (2009) Updated clinical diagnostic criteria for sporadic Creutzfeldt–Jakob disease. Brain 132:2659–2668. https://doi.org/10.1093/brain/awp19$$v132$$y2009
000169347 999C5 $$1P Hermann$$2Crossref$$9-- missing cx lookup --$$a10.1016/S1474-4422(20)30477-4$$p235 -$$tLancet Neurol$$uHermann P, Appleby B, Brandel JP et al (2021) Biomarkers and diagnostic guidelines for sporadic Creutzfeldt–Jakob disease. Lancet Neurol 20:235–246. https://doi.org/10.1016/S1474-4422(20)30477-4$$v20$$y2021
000169347 999C5 $$1N Watson$$2Crossref$$9-- missing cx lookup --$$a10.1001/jamanetworkopen.2021.46319$$pe2146319 -$$tJAMA Netw Open$$uWatson N, Hermann P, Ladogana A et al (2022) Validation of revised international Creutzfeldt–Jakob disease surveillance network diagnostic criteria for sporadic Creutzfeldt–Jakob disease. JAMA Netw Open 5:e2146319. https://doi.org/10.1001/jamanetworkopen.2021.46319$$v5$$y2022
000169347 999C5 $$1R Atarashi$$2Crossref$$9-- missing cx lookup --$$a10.1038/nm.2294$$p175 -$$tNat Med$$uAtarashi R, Satoh K, Sano K et al (2011) Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat Med 17:175–178. https://doi.org/10.1038/nm.2294$$v17$$y2011
000169347 999C5 $$1GP Saborio$$2Crossref$$9-- missing cx lookup --$$a10.1038/35081095$$p810 -$$tNature$$uSaborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411:810–813. https://doi.org/10.1038/35081095$$v411$$y2001
000169347 999C5 $$1FA Cazzaniga$$2Crossref$$9-- missing cx lookup --$$a10.4081/ejh.2021.3298$$p3298 -$$tEur J Histochem$$uCazzaniga FA, Bistaffa E, De Luca CMG et al (2021) Sporadic Creutzfeldt–Jakob disease: real-time quaking induced conversion (RT-QuIC) assay represents a major diagnostic advance. Eur J Histochem 65:3298. https://doi.org/10.4081/ejh.2021.3298$$v65$$y2021
000169347 999C5 $$1L Peckeu$$2Crossref$$9-- missing cx lookup --$$a10.2807/1560-7917.ES.2017.22.41.16-00715$$p16 -$$tEuro Surveill$$uPeckeu L, Delasnerie-Lauprètre N, Brandel JP et al (2017) Accuracy of diagnosis criteria in patients with suspected diagnosis of sporadic Creutzfeldt–Jakob disease and detection of 14-3-3 protein, France, 1992–2009. Euro Surveill 22:16–00715. https://doi.org/10.2807/1560-7917.ES.2017.22.41.16-00715$$v22$$y2017
000169347 999C5 $$1P Hermann$$2Crossref$$9-- missing cx lookup --$$a10.1212/WNL.0000000000005860$$pe331 -$$tNeurology$$uHermann P, Laux M, Glatzel M et al (2018) Validation and utilization of amended diagnostic criteria in Creutzfeldt–Jakob disease surveillance. Neurology 91:e331–e338. https://doi.org/10.1212/WNL.0000000000005860$$v91$$y2018
000169347 999C5 $$1DD Rhoads$$2Crossref$$9-- missing cx lookup --$$a10.1212/WNL.0000000000010086$$pe1017 -$$tNeurology$$uRhoads DD, Wrona A, Foutz A et al (2020) Diagnosis of prion diseases by RT-QuIC results in improved surveillance. Neurology 95:e1017–e1026. https://doi.org/10.1212/WNL.0000000000010086$$v95$$y2020
000169347 999C5 $$1A Franceschini$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-017-10922-w$$p10655 -$$tSci Rep$$uFranceschini A, Baiardi S, Hughson AG et al (2017) High diagnostic value of second generation CSF RT-QuIC across the wide spectrum of CJD prions. Sci Rep 7:10655. https://doi.org/10.1038/s41598-017-10922-w$$v7$$y2017
000169347 999C5 $$1Y Hayashi$$2Crossref$$9-- missing cx lookup --$$a10.1080/19336896.2017.1345416$$p284 -$$tPrion$$uHayashi Y, Iwasaki Y, Yoshikura N et al (2017) An autopsy-verified case of steroid-responsive encephalopathy with convulsion and a false-positive result from the real-time quaking-induced conversion assay. Prion 11:284–292. https://doi.org/10.1080/19336896.2017.1345416$$v11$$y2017
000169347 999C5 $$1I Zerr$$2Crossref$$9-- missing cx lookup --$$a10.1002/ana.410430109$$p32 -$$tAnn Neurol$$uZerr I, Bodemer M, Gefeller O et al (1998) Detection of 14-3-3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeldt–Jakob disease. Ann Neurol 43:32–40. https://doi.org/10.1002/ana.410430109$$v43$$y1998
000169347 999C5 $$1M Schmitz$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12035-015-9167-5$$p2189 -$$tMol Neurobiol$$uSchmitz M, Ebert E, Stoeck K et al (2016) Validation of 14-3-3 protein as a marker in sporadic Creutzfeldt–Jakob disease diagnostic. Mol Neurobiol 53:2189–2199. https://doi.org/10.1007/s12035-015-9167-5$$v53$$y2016
000169347 999C5 $$1M Schmitz$$2Crossref$$9-- missing cx lookup --$$a10.1038/nprot.2016.120$$p2233 -$$tNat Protoc$$uSchmitz M, Cramm M, Llorens F et al (2016) The real-time quaking-induced conversion assay for detection of human prion disease and study of other protein misfolding diseases. Nat Protoc 11:2233–2242. https://doi.org/10.1038/nprot.2016.120$$v11$$y2016
000169347 999C5 $$1M Cramm$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12035-015-9133-2$$p1896 -$$tMol Neurobiol$$uCramm M, Schmitz M, Karch A et al (2016) Stability and reproducibility underscore utility of RT-QuIC for diagnosis of Creutzfeldt–Jakob disease. Mol Neurobiol 53:1896–1904. https://doi.org/10.1007/s12035-015-9133-2$$v53$$y2016
000169347 999C5 $$1P Parchi$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00401-012-1002-8$$p517 -$$tActa Neuropathol$$uParchi P, de Boni L, Saverioni D et al (2012) Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: an inter-rater study among surveillance centres in Europe and USA. Acta Neuropathol 124:517–529. https://doi.org/10.1007/s00401-012-1002-8$$v124$$y2012
000169347 999C5 $$1WM Wemheuer$$2Crossref$$9-- missing cx lookup --$$a10.1097/NEN.0b013e31829d2799$$p758 -$$tJ Neuropathol Exp Neurol$$uWemheuer WM, Wrede A, Gawinecka J et al (2013) Filtration of protein aggregates increases the accuracy for diagnosing prion diseases in brain biopsies. J Neuropathol Exp Neurol 72:758–767. https://doi.org/10.1097/NEN.0b013e31829d2799$$v72$$y2013
000169347 999C5 $$1A Jesuthasan$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-022-11087-x$$p4452 -$$tJ Neurol$$uJesuthasan A, Sequeira D, Hyare H et al (2022) Assessing initial MRI reports for suspected CJD patients. J Neurol 269:4452–4458. https://doi.org/10.1007/s00415-022-11087-x$$v269$$y2022
000169347 999C5 $$1I Zerr$$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMra2119323$$p1345 -$$tN Engl J Med$$uZerr I (2022) Laboratory diagnosis of Creutzfeldt–Jakob disease. N Engl J Med 386:1345–1350. https://doi.org/10.1056/NEJMra2119323$$v386$$y2022
000169347 999C5 $$1S Abu-Rumeileh$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-019-09537-0$$p3136 -$$tJ Neurol$$uAbu-Rumeileh S, Baiardi S, Polischi B et al (2019) Diagnostic value of surrogate CSF biomarkers for Creutzfeldt–Jakob disease in the era of RT-QuIC. J Neurol 266:3136–3143. https://doi.org/10.1007/s00415-019-09537-0$$v266$$y2019
000169347 999C5 $$1P Rudge$$2Crossref$$9-- missing cx lookup --$$a10.1136/jnnp-2017-316853$$p461 -$$tJ Neurol Neurosurg Psychiatry$$uRudge P, Hyare H, Green A et al (2018) Imaging and CSF analyses effectively distinguish CJD from its mimics. J Neurol Neurosurg Psychiatry 89:461–466. https://doi.org/10.1136/jnnp-2017-316853$$v89$$y2018
000169347 999C5 $$1LI McGuire$$2Crossref$$9-- missing cx lookup --$$a10.1002/ana.23589$$p278 -$$tAnn Neurol$$uMcGuire LI, Peden AH, Orrú CD et al (2012) Real time quaking-induced conversion analysis of cerebrospinal fluid in sporadic Creutzfeldt–Jakob disease. Ann Neurol 72:278–285. https://doi.org/10.1002/ana.23589$$v72$$y2012
000169347 999C5 $$1CD Orrú$$2Crossref$$9-- missing cx lookup --$$a10.1128/mBio.02451-14$$pe02451 -$$tMBio$$uOrrú CD, Groveman BR, Hughson AG et al (2015) Rapid and sensitive RT-QuIC detection of human Creutzfeldt–Jakob disease using cerebrospinal fluid. MBio 6:e02451-e2514. https://doi.org/10.1128/mBio.02451-14$$v6$$y2015
000169347 999C5 $$1A Foutz$$2Crossref$$9-- missing cx lookup --$$a10.1002/ana.24833$$p79 -$$tAnn Neurol$$uFoutz A, Appleby BS, Hamlin C et al (2017) Diagnostic and prognostic value of human prion detection in cerebrospinal fluid. Ann Neurol 81:79–92. https://doi.org/10.1002/ana.24833$$v81$$y2017
000169347 999C5 $$1F Lattanzio$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00401-017-1683-0$$p559 -$$tActa Neuropathol$$uLattanzio F, Abu-Rumeileh S, Franceschini A et al (2017) Prion-specific and surrogate CSF biomarkers in Creutzfeldt–Jakob disease: diagnostic accuracy in relation to molecular subtypes and analysis of neuropathological correlates of p-tau and Aβ42 levels. Acta Neuropathol 133:559–578. https://doi.org/10.1007/s00401-017-1683-0$$v133$$y2017
000169347 999C5 $$1M Schmitz$$2Crossref$$9-- missing cx lookup --$$a10.1093/brain/awab350$$p700 -$$tBrain$$uSchmitz M, Villar-Piqué A, Hermann P et al (2022) Diagnostic accuracy of cerebrospinal fluid biomarkers in genetic prion diseases. Brain 145:700–712. https://doi.org/10.1093/brain/awab350$$v145$$y2022
000169347 999C5 $$1Y Hayashi$$2Crossref$$9-- missing cx lookup --$$a10.1080/19336896.2016.1243192$$p492 -$$tPrion$$uHayashi Y, Iwasaki Y, Takekoshi A et al (2016) An autopsy-verified case of FTLD-TDP type A with upper motor neuron-predominant motor neuron disease mimicking MM2-thalamic-type sporadic Creutzfeldt–Jakob disease. Prion 10:492–501. https://doi.org/10.1080/19336896.2016.1243192$$v10$$y2016
000169347 999C5 $$1SLR Simon$$2Crossref$$9-- missing cx lookup --$$a10.1017/cjn.2020.139$$p127 -$$tCan J Neurol Sci$$uSimon SLR, Peterson A, Phillipson C et al (2021) Prospective study demonstrates utility of EP-QuIC in Creutzfeldt–Jakob disease diagnoses. Can J Neurol Sci 48:127–129. https://doi.org/10.1017/cjn.2020.139$$v48$$y2021
000169347 999C5 $$1A Budhram$$2Crossref$$9-- missing cx lookup --$$a10.1017/cjn.2019.72$$p595 -$$tCan J Neurol Sci$$uBudhram A, Taylor RG, Fuller J et al (2019) The predictive value of endpoint quaking-induced conversion in Creutzfeldt–Jakob disease. Can J Neurol Sci 46:595–598. https://doi.org/10.1017/cjn.2019.72$$v46$$y2019
000169347 999C5 $$1P Hermann$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41582-022-00659-0$$p363 -$$tNat Rev Neurol$$uHermann P, Zerr I (2022) Rapidly progressive dementias—aetiologies, diagnosis and management. Nat Rev Neurol 18:363–376. https://doi.org/10.1038/s41582-022-00659-0$$v18$$y2022
000169347 999C5 $$1P Hermann$$2Crossref$$9-- missing cx lookup --$$a10.3390/v14020276$$p276 -$$tViruses$$uHermann P, Haller P, Goebel S et al (2022) Total and phosphorylated cerebrospinal fluid tau in the differential diagnosis of sporadic Creutzfeldt–Jakob disease and rapidly progressive Alzheimer’s disease. Viruses 14:276. https://doi.org/10.3390/v14020276$$v14$$y2022
000169347 999C5 $$1M Cramm$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12035-014-8709-6$$p396 -$$tMol Neurobiol$$uCramm M, Schmitz M, Karch A et al (2015) Characteristic CSF prion seeding efficiency in humans with prion diseases. Mol Neurobiol 51:396–405. https://doi.org/10.1007/s12035-014-8709-6$$v51$$y2015
000169347 999C5 $$1F Meyne$$2Crossref$$9-- missing cx lookup --$$a10.3233/JAD-2009-1110$$p863 -$$tJ Alzheimers Dis$$uMeyne F, Gloeckner SF, Ciesielczyk B et al (2009) Total prion protein levels in the cerebrospinal fluid are reduced in patients with various neurological disorders. J Alzheimers Dis 17:863–873. https://doi.org/10.3233/JAD-2009-1110$$v17$$y2009
000169347 999C5 $$1CD Orrú$$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMoa1315200$$p519 -$$tN Engl J Med$$uOrrú CD, Bongianni M, Tonoli G et al (2014) A test for Creutzfeldt–Jakob disease using nasal brushings. N Engl J Med 371:519–529. https://doi.org/10.1056/NEJMoa1315200$$v371$$y2014
000169347 999C5 $$1M Bongianni$$2Crossref$$9-- missing cx lookup --$$a10.1001/jamaneurol.2016.4614$$p155 -$$tJAMA Neurol$$uBongianni M, Orrù C, Groveman BR et al (2017) Diagnosis of human prion disease using real-time quaking-induced conversion testing of olfactory mucosa and cerebrospinal fluid samples. JAMA Neurol 74:155–162. https://doi.org/10.1001/jamaneurol.2016.4614$$v74$$y2017
000169347 999C5 $$1M Bongianni$$2Crossref$$9-- missing cx lookup --$$a10.1002/acn3.50897$$p2120 -$$tAnn Clin Transl Neurol$$uBongianni M, Ladogana A, Capaldi S et al (2019) α-Synuclein RT-QuIC assay in cerebrospinal fluid of patients with dementia with Lewy bodies. Ann Clin Transl Neurol 6:2120–2126. https://doi.org/10.1002/acn3.50897$$v6$$y2019
000169347 999C5 $$1M Rossi$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00401-020-02160-8$$p49 -$$tActa Neuropathol$$uRossi M, Candelise N, Baiardi S et al (2020) Ultrasensitive RT-QuIC assay with high sensitivity and specificity for Lewy body-associated synucleinopathies. Acta Neuropathol 140:49–62. https://doi.org/10.1007/s00401-020-02160-8$$v140$$y2020
000169347 999C5 $$1BR Groveman$$2Crossref$$9-- missing cx lookup --$$a10.1002/acn3.378$$p139 -$$tAnn Clin Transl Neurol$$uGroveman BR, Orrú CD, Hughson AG et al (2016) Extended and direct evaluation of RT-QuIC assays for Creutzfeldt–Jakob disease diagnosis. Ann Clin Transl Neurol 4:139–144. https://doi.org/10.1002/acn3.378$$v4$$y2016
000169347 999C5 $$1N McKenzie$$2Crossref$$9-- missing cx lookup --$$a10.1111/ene.1538$$p2431 -$$tEur J Neurol$$uMcKenzie N, Piconi G, Culeux A et al (2022) Concordance of cerebrospinal fluid real-time quaking-induced conversion across the European Creutzfeldt–Jakob disease surveillance network. Eur J Neurol 29:2431–2438. https://doi.org/10.1111/ene.1538$$v29$$y2022
000169347 999C5 $$1JP Brandel$$2Crossref$$9-- missing cx lookup --$$a10.1212/wnl.54.5.1095$$p1095 -$$tNeurology$$uBrandel JP, Delasnerie-Lauprêtre N, Laplanche JL et al (2000) Diagnosis of Creutzfeldt–Jakob disease: effect of clinical criteria on incidence estimates. Neurology 54:1095–1099. https://doi.org/10.1212/wnl.54.5.1095$$v54$$y2000