001     169351
005     20240610143745.0
024 7 _ |a 10.1093/hmg/ddac307
|2 doi
024 7 _ |a pmid:36611008
|2 pmid
024 7 _ |a 0964-6906
|2 ISSN
024 7 _ |a 1460-2083
|2 ISSN
024 7 _ |a altmetric:140977788
|2 altmetric
037 _ _ |a DZNE-2023-00126
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Nitta, Yohei
|b 0
245 _ _ |a Direct evaluation of neuroaxonal degeneration with the causative genes of neurodegenerative diseases in drosophila using the automated axon quantification system, MeDUsA.
260 _ _ |a Oxford
|c 2023
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1718023048_5323
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Drosophila is an excellent model organism for studying human neurodegenerative diseases (NDs). However, there is still almost no experimental system that could directly observe the degeneration of neurons and automatically quantify axonal degeneration. In this study, we created MeDUsA (a 'method for the quantification of degeneration using fly axons'), a standalone executable computer program based on Python that combines a pre-trained deep-learning masking tool with an axon terminal counting tool. This software automatically quantifies the number of retinal R7 axons in Drosophila from a confocal z-stack image series. Using this software, we were able to directly demonstrate that axons were degenerated by the representative causative genes of NDs for the first time in Drosophila. The fly retinal axon is an excellent experimental system that is capable of mimicking the pathology of axonal degeneration in human NDs. MeDUsA rapidly and accurately quantifies axons in Drosophila photoreceptor neurons. It enables large-scale research into axonal degeneration, including screening to identify genes or drugs that mediate axonal toxicity caused by ND proteins and diagnose the pathological significance of novel variants of human genes in axons.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Drosophila Proteins
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Drosophila: genetics
|2 MeSH
650 _ 2 |a Drosophila: metabolism
|2 MeSH
650 _ 2 |a Neurodegenerative Diseases: metabolism
|2 MeSH
650 _ 2 |a Axons: metabolism
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Drosophila Proteins: genetics
|2 MeSH
650 _ 2 |a Drosophila Proteins: metabolism
|2 MeSH
700 1 _ |a Kawai, Hiroki
|b 1
700 1 _ |a Maki, Ryuto
|b 2
700 1 _ |a Osaka, Jiro
|b 3
700 1 _ |a Hakeda-Suzuki, Satoko
|b 4
700 1 _ |a Nagai, Yoshitaka
|b 5
700 1 _ |a Doubková, Karolína
|0 P:(DE-2719)9000534
|b 6
|u dzne
700 1 _ |a Uehara, Tomoko
|b 7
700 1 _ |a Watanabe, Kenji
|b 8
700 1 _ |a Kosaki, Kenjiro
|b 9
700 1 _ |a Suzuki, Takashi
|b 10
700 1 _ |a Tavosanis, Gaia
|0 P:(DE-2719)2810271
|b 11
|u dzne
700 1 _ |a Sugie, Atsushi
|0 P:(DE-2719)2810439
|b 12
|u dzne
773 _ _ |a 10.1093/hmg/ddac307
|g p. ddac307
|0 PERI:(DE-600)1474816-2
|n 9
|p 1524-1538
|t Human molecular genetics
|v 32
|y 2023
|x 0964-6906
856 4 _ |u https://pub.dzne.de/record/169351/files/DZNE-2023-00126_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/169351/files/DZNE-2023-00126_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:169351
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)9000534
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 11
|6 P:(DE-2719)2810271
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-2719)2810439
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-18
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HUM MOL GENET : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 1 _ |0 I:(DE-2719)1013018
|k AG Tavosanis
|l Dynamics of neuronal circuits
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1013018
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21