001     194989
005     20240112171806.0
024 7 _ |a pmc:PMC9977318
|2 pmc
024 7 _ |a 10.7554/eLife.84262
|2 doi
024 7 _ |a pmid:36661218
|2 pmid
024 7 _ |a altmetric:143010985
|2 altmetric
037 _ _ |a DZNE-2023-00176
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Wang, Yuhan
|0 0000-0003-4447-5043
|b 0
245 _ _ |a Multimodal mapping of cell types and projections in the central nucleus of the amygdala.
260 _ _ |a Cambridge
|c 2023
|b eLife Sciences Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1680530942_25879
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The central nucleus of the amygdala (CEA) is a brain region that integrates external and internal sensory information and executes innate and adaptive behaviors through distinct output pathways. Despite its complex functions, the diversity of molecularly defined neuronal types in the CEA and their contributions to major axonal projection targets have not been examined systematically. Here, we performed single-cell RNA-sequencing (scRNA-seq) to classify molecularly defined cell types in the CEA and identified marker genes to map the location of these neuronal types using expansion-assisted iterative fluorescence in situ hybridization (EASI-FISH). We developed new methods to integrate EASI-FISH with 5-plex retrograde axonal labeling to determine the spatial, morphological, and connectivity properties of ~30,000 molecularly defined CEA neurons. Our study revealed spatiomolecular organization of the CEA, with medial and lateral CEA associated with distinct molecularly defined cell families. We also found a long-range axon projection network from the CEA, where target regions receive inputs from multiple molecularly defined cell types. Axon collateralization was found primarily among projections to hindbrain targets, which are distinct from forebrain projections. This resource reports marker gene combinations for molecularly defined cell types and axon-projection types, which will be useful for selective interrogation of these neuronal populations to study their contributions to the diverse functions of the CEA.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 2 |a Central Amygdaloid Nucleus: physiology
|2 MeSH
650 _ 2 |a In Situ Hybridization, Fluorescence
|2 MeSH
650 _ 2 |a Neurons: physiology
|2 MeSH
650 _ 2 |a Axons
|2 MeSH
650 _ 2 |a Neural Pathways: metabolism
|2 MeSH
650 _ 7 |a amygdala
|2 Other
650 _ 7 |a mouse
|2 Other
650 _ 7 |a neuroscience
|2 Other
650 _ 7 |a fluorescent in situ hybridization
|2 Other
650 _ 7 |a transcriptomics
|2 Other
700 1 _ |a Krabbe, Sabine
|0 P:(DE-2719)9001056
|b 1
|u dzne
700 1 _ |a Eddison, Mark
|b 2
700 1 _ |a Henry, Fredrick E
|b 3
700 1 _ |a Fleishman, Greg
|b 4
700 1 _ |a Lemire, Andrew L
|0 0000-0002-0624-3789
|b 5
700 1 _ |a Wang, Lihua
|b 6
700 1 _ |a Korff, Wyatt
|0 0000-0001-8396-1533
|b 7
700 1 _ |a Tillberg, Paul W
|0 0000-0002-2568-2365
|b 8
700 1 _ |a Lüthi, Andreas
|b 9
700 1 _ |a Sternson, Scott
|0 0000-0002-0835-444X
|b 10
773 _ _ |a 10.7554/eLife.84262
|g Vol. 12, p. e84262
|0 PERI:(DE-600)2687154-3
|p e84262
|t eLife
|v 12
|y 2023
|x 2050-084X
856 4 _ |u https://pub.dzne.de/record/194989/files/DZNE-2023-00176.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/194989/files/DZNE-2023-00176.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:194989
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9001056
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-23T12:20:44Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-23
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELIFE : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELIFE : 2022
|d 2023-08-22
920 1 _ |0 I:(DE-2719)5000059
|k AG Krabbe
|l Functional Diversity of Neural Circuits
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)5000059
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21