| Home > Publications Database > Cardiovascular correlates of epigenetic aging across the adult lifespan: a population-based study. > print |
| 001 | 248108 | ||
| 005 | 20250523100556.0 | ||
| 024 | 7 | _ | |a pmc:PMC10400487 |2 pmc |
| 024 | 7 | _ | |a 10.1007/s11357-022-00714-0 |2 doi |
| 024 | 7 | _ | |a pmid:36752898 |2 pmid |
| 024 | 7 | _ | |a 2509-2715 |2 ISSN |
| 024 | 7 | _ | |a 0161-9152 |2 ISSN |
| 024 | 7 | _ | |a 1574-4647 |2 ISSN |
| 024 | 7 | _ | |a 2152-4041 |2 ISSN |
| 024 | 7 | _ | |a 2331-3765 |2 ISSN |
| 024 | 7 | _ | |a 2331-3773 |2 ISSN |
| 024 | 7 | _ | |a 2452-0756 |2 ISSN |
| 024 | 7 | _ | |a 2509-2723 |2 ISSN |
| 024 | 7 | _ | |a altmetric:142289783 |2 altmetric |
| 037 | _ | _ | |a DZNE-2023-00212 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Liu, Dan |0 P:(DE-2719)2813521 |b 0 |e First author |
| 245 | _ | _ | |a Cardiovascular correlates of epigenetic aging across the adult lifespan: a population-based study. |
| 260 | _ | _ | |a [Cham] |c 2023 |b Springer International Publishing |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1747921515_14718 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a CC BY |
| 520 | _ | _ | |a Individuals with a similar chronological age can exhibit marked differences in cardiovascular risk profiles, but it is unknown whether this variation is related to different rates of biological aging. Therefore, we investigated the relation between nine domains of cardiovascular function and four epigenetic age acceleration estimators (i.e., AgeAccel.Horvath, AgeAccel.Hannum, AgeAccelPheno, and AgeAccelGrim), derived from DNA methylation profiles. Among 4194 participants (mean age 54.2 years (range 30.0-95.0)) from the Rhineland Study, an ongoing population-based cohort study in Bonn, Germany, epigenetic age acceleration increased by 0.19-1.84 years per standard deviation (SD) increase in cardiovascular risk across multiple domains, including measures of kidney function, adiposity, and a composite cardiovascular risk score. Measures of inflammation and glucose homeostasis were associated with AgeAccel.Hannum, AgeAccelPheno, and AgeAccelGrim, but not with AgeAccel.Horvath. Moreover, effect sizes were larger for AgeAccelPheno and AgeAccelGrim than for AgeAccel.Horvath and AgeAccel.Hannum. Similarly, epigenetic age acceleration increased by 0.15-0.81 years per SD increase in markers of vascular function (blood pressure, arterial stiffness, and hemodynamic measures), whereas better endothelial function was only associated with lower AgeAccelGrim. Most effects on epigenetic age acceleration were independent, which suggests they independently contribute to different rates of biological aging. |
| 536 | _ | _ | |a 354 - Disease Prevention and Healthy Aging (POF4-354) |0 G:(DE-HGF)POF4-354 |c POF4-354 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
| 650 | _ | 7 | |a Biological age |2 Other |
| 650 | _ | 7 | |a Cardiovascular aging |2 Other |
| 650 | _ | 7 | |a Epigenetic age acceleration |2 Other |
| 650 | _ | 2 | |a Humans |2 MeSH |
| 650 | _ | 2 | |a Aged |2 MeSH |
| 650 | _ | 2 | |a Aged, 80 and over |2 MeSH |
| 650 | _ | 2 | |a Longevity: genetics |2 MeSH |
| 650 | _ | 2 | |a Cohort Studies |2 MeSH |
| 650 | _ | 2 | |a Epigenesis, Genetic: genetics |2 MeSH |
| 650 | _ | 2 | |a DNA Methylation: genetics |2 MeSH |
| 650 | _ | 2 | |a Aging: genetics |2 MeSH |
| 693 | _ | _ | |0 EXP:(DE-2719)Rhineland Study-20190321 |5 EXP:(DE-2719)Rhineland Study-20190321 |e Rhineland Study / Bonn |x 0 |
| 700 | 1 | _ | |a Aziz, N. Ahmad |0 P:(DE-2719)2812578 |b 1 |
| 700 | 1 | _ | |a Pehlivan, Gökhan |0 P:(DE-2719)2811125 |b 2 |
| 700 | 1 | _ | |a Breteler, Monique M B |0 P:(DE-2719)2810403 |b 3 |e Last author |
| 773 | _ | _ | |a 10.1007/s11357-022-00714-0 |0 PERI:(DE-600)2886418-9 |n 3 |p 1605-1618 |t GeroScience |v 45 |y 2023 |x 2509-2715 |
| 856 | 4 | _ | |u https://pub.dzne.de/record/248108/files/DZNE-2023-00212.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://pub.dzne.de/record/248108/files/DZNE-2023-00212.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:pub.dzne.de:248108 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 0 |6 P:(DE-2719)2813521 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 1 |6 P:(DE-2719)2812578 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 2 |6 P:(DE-2719)2811125 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 3 |6 P:(DE-2719)2810403 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-354 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Prevention and Healthy Aging |x 0 |
| 914 | 1 | _ | |y 2023 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-17 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2022-11-17 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-17 |
| 915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2022-11-17 |w ger |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-08-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-25 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-25 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b GEROSCIENCE : 2022 |d 2023-08-25 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b GEROSCIENCE : 2022 |d 2023-08-25 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-2719)1012001 |k AG Breteler |l Population Health Sciences |x 0 |
| 920 | 1 | _ | |0 I:(DE-2719)5000071 |k AG Aziz |l Population & Clinical Neuroepidemiology |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-2719)1012001 |
| 980 | _ | _ | |a I:(DE-2719)5000071 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|