000255148 001__ 255148
000255148 005__ 20230726100418.0
000255148 0247_ $$2doi$$a10.1101/440719
000255148 0247_ $$2altmetric$$aaltmetric:49522831
000255148 037__ $$aDZNE-2023-00264
000255148 1001_ $$0P:(DE-2719)2811236$$aHoffmann, Sheila$$b0$$eFirst author$$udzne
000255148 245__ $$aLight induced synaptic vesicle autophagy
000255148 260__ $$c2018
000255148 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1678100177_13063
000255148 3367_ $$2ORCID$$aWORKING_PAPER
000255148 3367_ $$028$$2EndNote$$aElectronic Article
000255148 3367_ $$2DRIVER$$apreprint
000255148 3367_ $$2BibTeX$$aARTICLE
000255148 3367_ $$2DataCite$$aOutput Types/Working Paper
000255148 520__ $$aThe regulated turnover of synaptic vesicle (SV) proteins is thought to involve the ubiquitin dependent tagging and degradation through endo-lysosomal and autophagy pathways. Yet, it remains unclear which of these pathways are used, when they become activated and whether SVs are cleared en-mass together with SV proteins or whether both are degraded selectively. Equally puzzling is how quickly these systems can be activated and whether they function in real time to support synaptic health. To address these questions, we have developed an imaging based system that simultaneously tags presynaptic proteins while monitoring autophagy. Moreover, by tagging SV proteins with a light activated reactive oxygen species (ROS) generator, Supernova, it was possible to temporally control the damage to specific SV proteins and assess their consequence to autophagy mediated clearance mechanisms and synaptic function. Our results show that, in mouse hippocampal neurons, presynaptic autophagy can be induced in as little as 5-10 minutes and eliminates primarily the damaged protein rather than the SV en-mass. Importantly, we also find that autophagy is essential for synaptic function, as light-induced damage to e.g. Synaptophysin only compromises synaptic function when autophagy is simultaneously blocked. These data support the concept that presynaptic boutons have a robust highly regulated clearance system to maintain not only synapse integrity, but also synaptic function.
000255148 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000255148 588__ $$aDataset connected to CrossRef
000255148 7001_ $$aOrlando, Marta$$b1
000255148 7001_ $$0P:(DE-2719)2811708$$aAndrzejak, Ewa$$b2$$udzne
000255148 7001_ $$aTrimbuch, Thorsten$$b3
000255148 7001_ $$aRosenmund, Christian$$b4
000255148 7001_ $$0P:(DE-2719)2810967$$aAckermann, Frauke$$b5$$udzne
000255148 7001_ $$0P:(DE-2719)2810922$$aGarner, Craig C.$$b6$$eLast author$$udzne
000255148 773__ $$a10.1101/440719
000255148 7870_ $$0DZNE-2020-06903$$aHoffmann, Sheila et.al.$$dWashington, DC : Soc.57413, 2019$$iRelatedTo$$r$$tLight-Activated ROS Production Induces Synaptic Autophagy.
000255148 909CO $$ooai:pub.dzne.de:255148$$pVDB
000255148 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811236$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000255148 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811708$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000255148 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810967$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000255148 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810922$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000255148 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000255148 9141_ $$y2018
000255148 9201_ $$0I:(DE-2719)1810001$$kAG Garner$$lSynaptopathy$$x0
000255148 9201_ $$0I:(DE-2719)1813004$$kAG Ackermann$$lAstrocyte - Synapse Interaction$$x1
000255148 980__ $$apreprint
000255148 980__ $$aVDB
000255148 980__ $$aI:(DE-2719)1810001
000255148 980__ $$aI:(DE-2719)1813004
000255148 980__ $$aUNRESTRICTED