000255490 001__ 255490 000255490 005__ 20240403131748.0 000255490 0247_ $$2doi$$a10.1186/s12859-023-05144-z 000255490 0247_ $$2pmid$$apmid:36803415 000255490 0247_ $$2pmc$$apmc:PMC9938591 000255490 0247_ $$2ISSN$$a1471-2105 000255490 0247_ $$2altmetric$$aaltmetric:142716186 000255490 037__ $$aDZNE-2023-00291 000255490 041__ $$aEnglish 000255490 082__ $$a610 000255490 1001_ $$aLiebhoff, Anna-Maria$$b0 000255490 245__ $$aPathogen detection in RNA-seq data with Pathonoia. 000255490 260__ $$aHeidelberg$$bSpringer$$c2023 000255490 3367_ $$2DRIVER$$aarticle 000255490 3367_ $$2DataCite$$aOutput Types/Journal article 000255490 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705589088_9226 000255490 3367_ $$2BibTeX$$aARTICLE 000255490 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000255490 3367_ $$00$$2EndNote$$aJournal Article 000255490 500__ $$aCC BY 000255490 520__ $$aBacterial and viral infections may cause or exacerbate various human diseases and to detect microbes in tissue, one method of choice is RNA sequencing. The detection of specific microbes using RNA sequencing offers good sensitivity and specificity, but untargeted approaches suffer from high false positive rates and a lack of sensitivity for lowly abundant organisms.We introduce Pathonoia, an algorithm that detects viruses and bacteria in RNA sequencing data with high precision and recall. Pathonoia first applies an established k-mer based method for species identification and then aggregates this evidence over all reads in a sample. In addition, we provide an easy-to-use analysis framework that highlights potential microbe-host interactions by correlating the microbial to the host gene expression. Pathonoia outperforms state-of-the-art methods in microbial detection specificity, both on in silico and real datasets.Two case studies in human liver and brain show how Pathonoia can support novel hypotheses on microbial infection exacerbating disease. The Python package for Pathonoia sample analysis and a guided analysis Jupyter notebook for bulk RNAseq datasets are available on GitHub. 000255490 536__ $$0G:(DE-HGF)POF4-354$$a354 - Disease Prevention and Healthy Aging (POF4-354)$$cPOF4-354$$fPOF IV$$x0 000255490 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de 000255490 650_7 $$2Other$$aMetagenomics 000255490 650_7 $$2Other$$aPathogen detection 000255490 650_7 $$2Other$$aRNA sequencing 000255490 650_2 $$2MeSH$$aHumans 000255490 650_2 $$2MeSH$$aRNA-Seq 000255490 650_2 $$2MeSH$$aAlgorithms 000255490 650_2 $$2MeSH$$aSequence Analysis, RNA: methods 000255490 650_2 $$2MeSH$$aBase Sequence 000255490 650_2 $$2MeSH$$aBacteria: genetics 000255490 650_2 $$2MeSH$$aMetagenomics: methods 000255490 650_2 $$2MeSH$$aHigh-Throughput Nucleotide Sequencing: methods 000255490 7001_ $$0P:(DE-2719)2812499$$aMenden, Kevin$$b1$$udzne 000255490 7001_ $$aLaschtowitz, Alena$$b2 000255490 7001_ $$0P:(DE-HGF)0$$aFranke, Andre$$b3 000255490 7001_ $$aSchramm, Christoph$$b4 000255490 7001_ $$0P:(DE-2719)2810547$$aBonn, Stefan$$b5$$udzne 000255490 773__ $$0PERI:(DE-600)2041484-5$$a10.1186/s12859-023-05144-z$$gVol. 24, no. 1, p. 53$$n1$$p53$$tBMC bioinformatics$$v24$$x1471-2105$$y2023 000255490 8564_ $$uhttps://pub.dzne.de/record/255490/files/DZNE-2023-00291.pdf$$yOpenAccess 000255490 8564_ $$uhttps://pub.dzne.de/record/255490/files/DZNE-2023-00291.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000255490 909CO $$ooai:pub.dzne.de:255490$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000255490 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812499$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE 000255490 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)2810547$$aExternal Institute$$b5$$kExtern 000255490 9131_ $$0G:(DE-HGF)POF4-354$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Prevention and Healthy Aging$$x0 000255490 9141_ $$y2023 000255490 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000255490 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24 000255490 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24 000255490 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-24 000255490 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-12 000255490 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-24 000255490 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBMC BIOINFORMATICS : 2022$$d2023-10-24 000255490 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:05:16Z 000255490 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12 000255490 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:05:16Z 000255490 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24 000255490 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24 000255490 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-24 000255490 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000255490 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-24 000255490 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-12 000255490 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12 000255490 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-24 000255490 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-12 000255490 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T09:05:16Z 000255490 9201_ $$0I:(DE-2719)1210002$$kAG Heutink$$lGenome Biology of Neurodegenerative Diseases$$x0 000255490 980__ $$ajournal 000255490 980__ $$aVDB 000255490 980__ $$aUNRESTRICTED 000255490 980__ $$aI:(DE-2719)1210002 000255490 9801_ $$aFullTexts