001     255490
005     20240403131748.0
024 7 _ |a 10.1186/s12859-023-05144-z
|2 doi
024 7 _ |a pmid:36803415
|2 pmid
024 7 _ |a pmc:PMC9938591
|2 pmc
024 7 _ |a 1471-2105
|2 ISSN
024 7 _ |a altmetric:142716186
|2 altmetric
037 _ _ |a DZNE-2023-00291
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Liebhoff, Anna-Maria
|b 0
245 _ _ |a Pathogen detection in RNA-seq data with Pathonoia.
260 _ _ |a Heidelberg
|c 2023
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1705589088_9226
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a CC BY
520 _ _ |a Bacterial and viral infections may cause or exacerbate various human diseases and to detect microbes in tissue, one method of choice is RNA sequencing. The detection of specific microbes using RNA sequencing offers good sensitivity and specificity, but untargeted approaches suffer from high false positive rates and a lack of sensitivity for lowly abundant organisms.We introduce Pathonoia, an algorithm that detects viruses and bacteria in RNA sequencing data with high precision and recall. Pathonoia first applies an established k-mer based method for species identification and then aggregates this evidence over all reads in a sample. In addition, we provide an easy-to-use analysis framework that highlights potential microbe-host interactions by correlating the microbial to the host gene expression. Pathonoia outperforms state-of-the-art methods in microbial detection specificity, both on in silico and real datasets.Two case studies in human liver and brain show how Pathonoia can support novel hypotheses on microbial infection exacerbating disease. The Python package for Pathonoia sample analysis and a guided analysis Jupyter notebook for bulk RNAseq datasets are available on GitHub.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Metagenomics
|2 Other
650 _ 7 |a Pathogen detection
|2 Other
650 _ 7 |a RNA sequencing
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a RNA-Seq
|2 MeSH
650 _ 2 |a Algorithms
|2 MeSH
650 _ 2 |a Sequence Analysis, RNA: methods
|2 MeSH
650 _ 2 |a Base Sequence
|2 MeSH
650 _ 2 |a Bacteria: genetics
|2 MeSH
650 _ 2 |a Metagenomics: methods
|2 MeSH
650 _ 2 |a High-Throughput Nucleotide Sequencing: methods
|2 MeSH
700 1 _ |a Menden, Kevin
|0 P:(DE-2719)2812499
|b 1
|u dzne
700 1 _ |a Laschtowitz, Alena
|b 2
700 1 _ |a Franke, Andre
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schramm, Christoph
|b 4
700 1 _ |a Bonn, Stefan
|0 P:(DE-2719)2810547
|b 5
|u dzne
773 _ _ |a 10.1186/s12859-023-05144-z
|g Vol. 24, no. 1, p. 53
|0 PERI:(DE-600)2041484-5
|n 1
|p 53
|t BMC bioinformatics
|v 24
|y 2023
|x 1471-2105
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/255490/files/DZNE-2023-00291.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/255490/files/DZNE-2023-00291.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:255490
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2812499
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-2719)2810547
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BMC BIOINFORMATICS : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:05:16Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:05:16Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-24
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-24
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T09:05:16Z
920 1 _ |0 I:(DE-2719)1210002
|k AG Heutink
|l Genome Biology of Neurodegenerative Diseases
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1210002
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21